Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 17 задач
Версия для печати
Убрать все задачи

Решите в натуральных числах уравнение  (1 + nk)l = 1 + nm,  где  l > 1.

Вниз   Решение


На экране компьютера напечатано некоторое натуральное число, кратное 7, и отмечен курсором промежуток между какими-то двумя его соседними цифрами.
Докажите, что существует такая цифра, что если её впечатать в отмеченный промежуток любое число раз, получится число, делящееся на 7.

ВверхВниз   Решение


Касательная в точке B к описанной окружности S треугольника ABC пересекает прямую AC в точке K. Из точки K проведена вторая касательная KD к окружности S. Докажите, что BD — симедиана треугольника ABC.

ВверхВниз   Решение


Докажите для каждого натурального числа  n > 1  равенство:   [n1/2] + [n1/3] + ... + [n1/n] = [log2n] + [log3n] + ... + [lognn].

ВверхВниз   Решение


Несколько (конечное число) точек плоскости окрашены в четыре цвета, причём есть точки каждого цвета. Никакие три из этих точек не лежат на одной прямой. Докажите, что найдутся три разных (возможно, пересекающихся) треугольника, каждый из которых имеет вершины трёх разных цветов и не содержит внутри себя окрашенных точек.

ВверхВниз   Решение


К плоскости приклеены два непересекающихся не обязательно одинаковых деревянных круга – серый и чёрный. Дан бесконечный деревянный угол, одна сторона которого серая, а другая – чёрная. Его передвигают так, чтобы круги были снаружи угла, причём серая сторона касалась серого круга, а чёрная – чёрного (касание происходит не в вершине). Докажите, что внутри угла можно нарисовать луч, выходящий из вершины, так, чтобы при всевозможных положениях угла этот луч проходил через одну и ту же точку плоскости.

ВверхВниз   Решение


Дана клетчатая полоса  1×N.  Двое играют в следующую игру. На очередном ходу первый игрок ставит в одну из свободных клеток крестик, а второй – нолик. Не разрешается ставить в соседние клетки два крестика или два нолика. Проигрывает тот, кто не может сделать ход.
Кто из игроков может всегда выиграть (как бы ни играл его соперник)?

ВверхВниз   Решение


У математика есть набор из 16 гирь: 1/3 кг, 1/4 кг, 1/5 кг, ..., 1/18 кг. На левой чаше весов лежит груз 1 кг. Какие гири положить на правую чашу весов, чтобы уравновесить груз? (Достаточно привести один пример.)

ВверхВниз   Решение


Все натуральные числа выписали в ряд в некотором порядке (каждое число по одному разу). Обязательно ли найдутся несколько (больше одного) чисел, выписанных подряд (начиная с какого-то места), сумма которых будет простым числом?

ВверхВниз   Решение


По кругу стоят 99 детей, изначально у каждого есть мячик. Ежеминутно каждый ребёнок с мячиком кидает свой мячик одному из двух соседей; при этом, если два мячика попадают к одному ребёнку, то один из этих мячиков теряется безвозвратно. Через какое наименьшее время у детей может остаться только один мячик?

ВверхВниз   Решение


а) Из произвольной точки M внутри правильного n-угольника проведены перпендикуляры  MK1, MK2, ..., MKn  к его сторонам (или их продолжениям). Докажите, что      (O – центр n-угольника).

б) Докажите, что сумма векторов, проведённых из любой точки M внутри правильного тетраэдра перпендикулярно к его граням, равна     где O – центр тетраэдра.

ВверхВниз   Решение


Есть тридцать карточек, на каждой написано по числу: на десяти карточках – a, на десяти других – b, и на десяти оставшихся – c (числа a, b, c все разные). Известно, что к любым пяти карточкам можно подобрать еще пять так, что сумма чисел на этих десяти карточках будет равна нулю. Докажите, что одно из чисел a, b, c равно нулю.

ВверхВниз   Решение


Квадрат $10\times10$ клеток надо покрыть полосками $1\times9$ клеток. Сделайте это так, чтобы каждая клетка была покрыта одной или двумя полосками, но никакой прямоугольник $1\times2$ не был покрыт в два слоя. (Полоски кладут по линиям сетки горизонтально или вертикально, полоски не должны выходить за границу квадрата.)

ВверхВниз   Решение


Прямые AM и AN симметричны относительно биссектрисы угла A треугольника ABC (точки M и N лежат на прямой BC). Докажите, что  BM . BN/(CM . CN) = c2/b2. В частности, если AS — симедиана, то  BS/CS = c2/b2.

ВверхВниз   Решение


Миша стоит в центре круглой лужайке радиуса 100 метров. Каждую минуту он делает шаг длиной 1 метр. Перед каждым шагом он объявляет направление, в котором хочет шагнуть. Катя имеет право заставить его сменить направление на противоположное. Может ли Миша действовать так, чтобы в какой-то момент обязательно выйти с лужайки, или Катя всегда сможет ему помешать?

ВверхВниз   Решение


Автор: Русских И.

Катя каждый день ест на завтрак либо кашу, либо яичницу, либо сырники, но никогда не ест два дня подряд одно и то же. В течение двух недель Катя записывала, чем она завтракала. Оказалось, что сырники она ела в два раза чаще, чем кашу. Сколько раз за эти две недели Катя завтракала яичницей?

ВверхВниз   Решение


a) Петя и Вася задумали по три натуральных числа. Петя для каждых двух своих чисел написал на доске их наибольший общий делитель. Вася для каждых двух из своих чисел написал на доске их наименьшее общее кратное. Оказалось, что Петя написал на доске те же числа, что и Вася (возможно в другом порядке). Докажите, что все написанные на доске числа равны.

б) Останется ли верным утверждение предыдущей задачи, если Петя и Вася изначально задумали по четыре натуральных числа?

Вверх   Решение

Задача 64581
Темы:    [ НОД и НОК. Взаимная простота ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10
Из корзины
Прислать комментарий

Условие

a) Петя и Вася задумали по три натуральных числа. Петя для каждых двух своих чисел написал на доске их наибольший общий делитель. Вася для каждых двух из своих чисел написал на доске их наименьшее общее кратное. Оказалось, что Петя написал на доске те же числа, что и Вася (возможно в другом порядке). Докажите, что все написанные на доске числа равны.

б) Останется ли верным утверждение предыдущей задачи, если Петя и Вася изначально задумали по четыре натуральных числа?


Решение

  а) Пусть Петя и Вася написали числа a, b и c. Попарные наибольшие общие делители этих чисел равны: это наибольший общий делитель d трёх чисел, задуманных Петей. С другой стороны, каждый такой попарный делитель делится на одно из чисел, задуманных Васей. Значит, d делится и на наименьшее общее кратное задуманных Васей чисел, которое равно  НОК(a, b, c).  Следовательно,  НОК(a, b, c) = НОД(a, b, c),  то есть  a = b = c.

  б) Контрпример: если Петя задумал числа 6, 10, 15, 30, а Вася – числа 1, 2, 3, 5, то оба выпишут наборы 2, 3, 5, 6, 10, 15.


Ответ

б) Не останется.

Замечания

1. Более общий контрпример: у Васи – четыре попарно взаимно простых числа a, b, c, d, у Пети – abc, abd, acd, bcd; в итоге оба напишут ab, ac, ad, bc, bd, cd.   Вырожденный пример: у Васи – 1, 1, 1, 2, у Пети – 1, 2, 2, 2.

2. Баллы: 8-9 кл – 3 + 3, 10-11 кл. – 2 + 2.

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Номер 29
Дата 2007/2008
вариант
Вариант осенний тур, сложный вариант, 8-9 класс
задача
Номер 2
олимпиада
Название Турнир городов
Турнир
Номер 29
Дата 2007/2008
вариант
Вариант осенний тур, сложный вариант, 10-11 класс
задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .