ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
Существует ли треугольник со сторонами a = 7 и b = 2, если известно, что высота, опущенная на третью сторону этого треугольника, является средним геометрическим двух других высот?
Докажите, что если среди полученных фигур есть
p-звенная и q-звенная, то
p + q К натуральному числу a > 1 приписали это же число и получили число b, кратное a². Найдите все возможные значения числа b/a². Петя записал несколько алгебраических выражений, возвёл каждое из них в квадрат и сложил результаты. Гриша записал на доске 100 чисел. Затем он увеличил каждое число на 1 и заметил, что произведение всех 100 чисел не изменилось. Он опять увеличил каждое число на 1, и снова произведение всех чисел не изменилось, и так далее. Всего Гриша повторил эту процедуру k раз, и все k раз произведение чисел не менялось. Найдите наибольшее возможное значение k. Найдите натуральное число вида n = 2x3y5z, зная, что половина его имеет на 30 делителей меньше, треть – на 35 и пятая часть – на 42 делителя меньше, чем само число. Продолжения сторон AB и CD выпуклого четырёхугольника ABCD пересекаются в точке K. Известно, что AD = BC. Пусть M и N – середины сторон AB и CD. Докажите, что треугольник MNK тупоугольный. Даны две точки A и B. Две окружности касаются
прямой AB (одна — в точке A, другая — в точке B) и касаются
друг друга в точке M. Найдите ГМТ M.
а) Прямоугольная таблица из m строк и n столбцов заполнена числами. Переставим числа в каждой строке в порядке возрастания. Если после этого переставить числа в каждом столбце в порядке возрастания, то в каждой строке они по-прежнему будут стоять в порядке возрастания. Докажите это. Окружность, вписанная в треугольник, точкой касания делит одну из сторон на отрезки, равные 3 и 4, а противолежащий этой стороне угол равен 120o . Найдите площадь треугольника. Даны непересекающиеся хорды AB и CD окружности.
Постройте точку X окружности так, чтобы хорды AX и BX
высекали на хорде CD отрезок EF, имеющий данную длину a.
Основание пирамиды – треугольник со сторонами 10, 13, 13. Площади боковых граней соответственно равны 150, 195, 195. Найдите высоту пирамиды. В квадрате ABCD площади 1 сторона AD продолжена за точку D и на продолжении взята точка O, OD = 3. Из точки O проведены два луча. Первый пересекает отрезок CD в точке M и отрезок AB в точке N, второй пересекает отрезок CD в точке L и отрезок BC в точке K, ON = a, ∠BKL = α. Найдите площадь многоугольника BKLMN.
В прямоугольном треугольнике катеты равны 75 и 100. На отрезках гипотенузы, образуемых основанием высоты, построены полуокружности по одну сторону с данным треугольником. Найдите отрезки катетов, заключённые внутри полукругов.
В маленьком городе только одна трамвайная линия. Она кольцевая, и трамваи ходят по ней в обоих направлениях. На кольце есть остановки Цирк, Парк и Зоопарк. От Парка до Зоопарка путь на трамвае через Цирк втрое длиннее, чем не через Цирк. От Цирка до Зоопарка путь через Парк вдвое короче, чем не через Парк. Какой путь от Парка до Цирка – через Зоопарк или не через Зоопарк – короче и во сколько раз? |
Задача 65597
УсловиеВ маленьком городе только одна трамвайная линия. Она кольцевая, и трамваи ходят по ней в обоих направлениях. На кольце есть остановки Цирк, Парк и Зоопарк. От Парка до Зоопарка путь на трамвае через Цирк втрое длиннее, чем не через Цирк. От Цирка до Зоопарка путь через Парк вдвое короче, чем не через Парк. Какой путь от Парка до Цирка – через Зоопарк или не через Зоопарк – короче и во сколько раз? РешениеСядем в трамвай на остановке Зоопарк и поедем через Цирк к Парку, а потом, не покидая трамвай, вернёмся к Зоопарку. Вторая часть пути втрое короче первой, то есть первая занимает три четверти полного круга, а вторая – четверть. Отметим на схеме Зоопарк и Парк и где-то на более длинной дуге между ними отметим Цирк (см. рис.). Теперь на том же трамвае поедем из Цирка к Зоопарку (при этом проезжая Парк, как видно на схеме). ОтветПуть не через Зоопарк короче в 11 раз. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке