Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 16 задач
Версия для печати
Убрать все задачи

Решите в натуральных числах уравнение  (1 + nk)l = 1 + nm,  где  l > 1.

Вниз   Решение


На экране компьютера напечатано некоторое натуральное число, кратное 7, и отмечен курсором промежуток между какими-то двумя его соседними цифрами.
Докажите, что существует такая цифра, что если её впечатать в отмеченный промежуток любое число раз, получится число, делящееся на 7.

ВверхВниз   Решение


Касательная в точке B к описанной окружности S треугольника ABC пересекает прямую AC в точке K. Из точки K проведена вторая касательная KD к окружности S. Докажите, что BD — симедиана треугольника ABC.

ВверхВниз   Решение


Докажите для каждого натурального числа  n > 1  равенство:   [n1/2] + [n1/3] + ... + [n1/n] = [log2n] + [log3n] + ... + [lognn].

ВверхВниз   Решение


Несколько (конечное число) точек плоскости окрашены в четыре цвета, причём есть точки каждого цвета. Никакие три из этих точек не лежат на одной прямой. Докажите, что найдутся три разных (возможно, пересекающихся) треугольника, каждый из которых имеет вершины трёх разных цветов и не содержит внутри себя окрашенных точек.

ВверхВниз   Решение


К плоскости приклеены два непересекающихся не обязательно одинаковых деревянных круга – серый и чёрный. Дан бесконечный деревянный угол, одна сторона которого серая, а другая – чёрная. Его передвигают так, чтобы круги были снаружи угла, причём серая сторона касалась серого круга, а чёрная – чёрного (касание происходит не в вершине). Докажите, что внутри угла можно нарисовать луч, выходящий из вершины, так, чтобы при всевозможных положениях угла этот луч проходил через одну и ту же точку плоскости.

ВверхВниз   Решение


Дана клетчатая полоса  1×N.  Двое играют в следующую игру. На очередном ходу первый игрок ставит в одну из свободных клеток крестик, а второй – нолик. Не разрешается ставить в соседние клетки два крестика или два нолика. Проигрывает тот, кто не может сделать ход.
Кто из игроков может всегда выиграть (как бы ни играл его соперник)?

ВверхВниз   Решение


У математика есть набор из 16 гирь: 1/3 кг, 1/4 кг, 1/5 кг, ..., 1/18 кг. На левой чаше весов лежит груз 1 кг. Какие гири положить на правую чашу весов, чтобы уравновесить груз? (Достаточно привести один пример.)

ВверхВниз   Решение


Все натуральные числа выписали в ряд в некотором порядке (каждое число по одному разу). Обязательно ли найдутся несколько (больше одного) чисел, выписанных подряд (начиная с какого-то места), сумма которых будет простым числом?

ВверхВниз   Решение


По кругу стоят 99 детей, изначально у каждого есть мячик. Ежеминутно каждый ребёнок с мячиком кидает свой мячик одному из двух соседей; при этом, если два мячика попадают к одному ребёнку, то один из этих мячиков теряется безвозвратно. Через какое наименьшее время у детей может остаться только один мячик?

ВверхВниз   Решение


а) Из произвольной точки M внутри правильного n-угольника проведены перпендикуляры  MK1, MK2, ..., MKn  к его сторонам (или их продолжениям). Докажите, что      (O – центр n-угольника).

б) Докажите, что сумма векторов, проведённых из любой точки M внутри правильного тетраэдра перпендикулярно к его граням, равна     где O – центр тетраэдра.

ВверхВниз   Решение


Есть тридцать карточек, на каждой написано по числу: на десяти карточках – a, на десяти других – b, и на десяти оставшихся – c (числа a, b, c все разные). Известно, что к любым пяти карточкам можно подобрать еще пять так, что сумма чисел на этих десяти карточках будет равна нулю. Докажите, что одно из чисел a, b, c равно нулю.

ВверхВниз   Решение


Квадрат $10\times10$ клеток надо покрыть полосками $1\times9$ клеток. Сделайте это так, чтобы каждая клетка была покрыта одной или двумя полосками, но никакой прямоугольник $1\times2$ не был покрыт в два слоя. (Полоски кладут по линиям сетки горизонтально или вертикально, полоски не должны выходить за границу квадрата.)

ВверхВниз   Решение


Прямые AM и AN симметричны относительно биссектрисы угла A треугольника ABC (точки M и N лежат на прямой BC). Докажите, что  BM . BN/(CM . CN) = c2/b2. В частности, если AS — симедиана, то  BS/CS = c2/b2.

ВверхВниз   Решение


Миша стоит в центре круглой лужайке радиуса 100 метров. Каждую минуту он делает шаг длиной 1 метр. Перед каждым шагом он объявляет направление, в котором хочет шагнуть. Катя имеет право заставить его сменить направление на противоположное. Может ли Миша действовать так, чтобы в какой-то момент обязательно выйти с лужайки, или Катя всегда сможет ему помешать?

ВверхВниз   Решение


Автор: Русских И.

Катя каждый день ест на завтрак либо кашу, либо яичницу, либо сырники, но никогда не ест два дня подряд одно и то же. В течение двух недель Катя записывала, чем она завтракала. Оказалось, что сырники она ела в два раза чаще, чем кашу. Сколько раз за эти две недели Катя завтракала яичницей?

Вверх   Решение

Задача 67389
Темы:    [ Текстовые задачи (прочее) ]
[ Перебор случаев ]
[ Принцип Дирихле (прочее) ]
Сложность: 3
Классы: 5,6,7,8
Из корзины
Прислать комментарий

Условие

Автор: Русских И.

Катя каждый день ест на завтрак либо кашу, либо яичницу, либо сырники, но никогда не ест два дня подряд одно и то же. В течение двух недель Катя записывала, чем она завтракала. Оказалось, что сырники она ела в два раза чаще, чем кашу. Сколько раз за эти две недели Катя завтракала яичницей?

Решение

Если Катя сколько-то раз ела кашу, то сырники она ела вдвое больше, а яичницу — в оставшиеся дни. Запишем возникающие варианты в виде таблицы:

каша сырники яичница
1 2 11
2 4 8
3 6 5
4 8 2
5 или больше 10 или больше невозможно

Катя могла завтракать каждым видом еды не больше 7 раз (докажем это ниже). Значит, единственная возможность — она ела кашу 3 раза, сырники 6 раз, яичницу 5 раз. Разобьём 14 дней на 7 пар соседних дней. По условию любой вид еды в каждой такой паре встречался не больше 1 раза. Значит, любой вид еды действительно встречался не больше 7 раз.

Ответ

5 раз.

Замечания

Такая ситуация действительно возможна — например, Катя могла завтракать в таком порядке: С-Я-К-С-ЯК-С-Я-К-С-Я-С-Я-С.

Источники и прецеденты использования

олимпиада
Название Математический праздник
год
Год 2025
класс
Класс 7
задача
Номер 2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .