ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Квадратный трёхчлен f(x) = ax² + bx + c таков, что уравнение f(x) = x не имеет вещественных корней. Пусть характеристическое уравнение ( 11.3) последовательности {an} имеет два различных корня x1 и x2. Докажите, что при фиксированных a0, a1 существует ровно одна пара чисел c1, c2 такая, что
an = c1x1n + c2x2n (n = 0, 1, 2,...).
Дан выпуклый многоугольник и точка O внутри него. Любая прямая, проходящая через точку O, делит площадь многоугольника пополам. Доказать, что многоугольник центрально-симметричный и O — центр симметрии. Из последовательности a, a + d, a + 2d, a + 3d, ..., являющейся бесконечной арифметической прогрессией, где d не равно 0, тогда и только тогда можно выбрать подпоследовательность, являющуюся бесконечной геометрической прогрессией, когда отношение a/d рационально. Докажите это. На суде в качестве вещественного доказательства предъявлено а) Имеется 51 двузначное число. Докажите, что из этих чисел можно выбрать по крайней мере 6 чисел так, чтобы никакие два из выбранных чисел ни в одном разряде не имели одинаковой цифры. б) Даны натуральные числа k и n, причём 1 < k < n. Для какого наименьшего m верно следующее утверждение: при любой расстановке m ладей на доске размером n×n клеток можно выбрать k ладей из этих m так, чтобы никакие две из этих выбранных ладей не били друг друга? а) К любому конечному множеству точек плоскости, обладающему тем свойством, что любые три точки из этого множества являются вершинами невырожденного тупоугольного треугольника, всегда можно добавить ещё одну точку так, что это свойство сохранится. Докажите это. б) Справедливо ли аналогичное утверждение для бесконечного множества точек плоскости? Даны два треугольника A1A2A3 и B1B2B3. "Опишите" вокруг треугольника A1A2A3 треугольник M1M2M3 наибольшей площади, подобный треугольнику B1B2B3 (вершина A1 должна лежать на прямой M2M3, вершина A2 – на прямой A1A3, вершина A3 – на прямой A1A2). На бумагу поставили кляксу. Для каждой точки кляксы определили наименьшее и наибольшее расстояние до границы кляксы. Среди всех наименьших расстояний выбрали наибольшее, а среди наибольших выбрали наименьшее и сравнили полученные два числа. Какую форму имеет клякса, если эти два числа равны между собой?
Найдите формулу n-го члена для последовательностей,
заданных условиями (
n
Точка K – середина стороны AB квадрата ABCD, а точка L делит диагональ AC в отношении AL : LC = 3 : 1. Докажите, что угол KLD прямой. В трёх вершинах квадрата находятся три кузнечика. Они играют в чехарду, то есть прыгают друг через друга. При этом, если кузнечик A прыгает через кузнечика B, то после прыжка он оказывается от B на том же расстоянии, что и до прыжка, и, естественно, на той же прямой. Может ли один из них попасть в четвёртую вершину квадрата? На прямой l даны точки A, B, C и D. Через точки A и
B, а также через точки C и D проводятся параллельные прямые.
Диагонали трапеции взаимно перпендикулярны. Докажите, что произведение длин оснований трапеции равно сумме произведений длин отрезков одной диагонали и длин отрезков другой диагонали, на которые они делятся точкой пересечения. В центре квадрата находится полицейский, а в одной из его вершин – гангстер. Полицейский может бегать по всему квадрату, а гангстер – только по его сторонам. Известно, что отношение максимальной скорости полицейского и максимальной скорости гангстера равно: а) 0,5; б) 0,49; в) 0,34; г) ⅓. Сможет ли полицейский может бежать так, что в какой-то момент окажется на одной стороне с гангстером? Доказать, что в выпуклый равносторонний (но не обязательно правильный) пятиугольник можно поместить правильный треугольник так, что одна из его сторон будет совпадать со стороной пятиугольника, а весь треугольник будет лежать внутри этого пятиугольника. |
Задача 79257
УсловиеДоказать, что в выпуклый равносторонний (но не обязательно правильный)
пятиугольник можно поместить правильный треугольник так, что одна из его
сторон будет совпадать со стороной пятиугольника, а весь треугольник будет
лежать внутри этого пятиугольника.
РешениеПредположим, что для некоторого равностороннего выпуклого пятиугольника
ABCDE со стороной, равной единице, утверждение задачи неверно. Можно
считать, что наибольшая из диагоналей — AD, что точки A и D лежат на горизонтальной прямой (D правее A), точки В и С — в её верхней полуплоскости, причём С не ближе к прямой AD, чем В. Ясно, что
1 < |AD| < |AE| + |ED| = 2.
Поскольку в треугольниках ABD и ACD
сторона AD — наибольшая, углы ABD и ACD, а тем более ABC и BCD все больше 60o, следовательно, равносторонние треугольники, построенные на сторонах AB, BC и CD, должны пересекаться отрезком AD (ведь каждый из них, по предположению, пересекается контуром пятиугольника, а отрезками AB, BC и CE эти треугольники пересечься не могут). Таким
образом, углы BAD и CDA меньше 60o.
Отметим на отрезке AD точки B1, C1 и на его продолжении — точку С3, для которых |AB1| = |C1D| = |B1C3| = 1, и построим в верхней полуплоскости разносторонние треугольники AB1В2, C1DC2, B1C3C4. Точка В должна лежать где-то на дуге В1В2 с центром A, точка С — на дуге C1C2 с центром D. Рассмотрим полосу межды прямыми AD и В2C2. Поскольку |BC| = 1 и С лежит не ниже В (но и не выше, чем на расстоянии Это решение поддаётся обобщению и позволяет доказать аналогичное утверждение для любого равностороннего выпуклого (2n + 1) - угольника. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке