ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 >> [Всего задач: 12]      



Задача 65945  (#8.1.1)

Темы:   [ Обыкновенные дроби ]
[ Тождественные преобразования ]
[ Разложение на множители ]
Сложность: 3
Классы: 7,8,9

Известно, что  1/a1/b = 1/a+b.  Докажите, что  1/a21/b2 = 1/ab.

Прислать комментарий     Решение

Задача 65946  (#8.1.2)

Темы:   [ Ромбы. Признаки и свойства ]
[ Разрезания на части, обладающие специальными свойствами ]
Сложность: 3
Классы: 8,9

Можно ли произвольный ромб разрезать не более, чем на две части так, чтобы из этих частей сложить прямоугольник?

Прислать комментарий     Решение

Задача 65947  (#8.1.3)

Темы:   [ Простые числа и их свойства ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 8,9

Найдите наименьшее простое число, которое можно представить в виде суммы пяти различных простых чисел.

Прислать комментарий     Решение

Задача 65948  (#8.2.1)

Тема:   [ Задачи на проценты и отношения ]
Сложность: 3+
Классы: 8,9

В корзине лежало не более 70 грибов, среди которых 52% – белые. Если выкинуть три самых маленьких гриба, то белых станет половина. Сколько грибов в корзине?

Прислать комментарий     Решение

Задача 65949  (#8.2.2)

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Конкуррентность высот. Углы между высотами. ]
Сложность: 3+
Классы: 8,9

Прямая, перпендикулярная гипотенузе AB прямоугольного треугольника АВС, пересекает прямые АС и ВС в точках Е и D соответственно. Найдите угол между прямыми AD и ВЕ.

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы, Московского института открытого образования и ФЦП "Кадры" .