ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 10]      



Задача 65972

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Разрезания (прочее) ]
Сложность: 3+
Классы: 6,7

Фермер огородил снаружи участок земли и разделил его на треугольники со стороной 50 м. В некоторых треугольниках он высадил капусту, а в некоторые пустил пастись коз. Помогите фермеру построить по линиям сетки дополнительные заборы как можно меньшей общей длины, чтобы защитить всю капусту от коз.

Прислать комментарий     Решение

Задача 65973

Темы:   [ Простые числа и их свойства ]
[ Признаки делимости (прочее) ]
Сложность: 3+
Классы: 6,7

На двух карточках записаны четыре различные цифры – по одной с каждой стороны карточки. Может ли оказаться так, что всякое двузначное число, которое можно сложить из этих карточек, будет простым? (Нельзя переворачивать цифры вверх ногами, то есть делать из цифры 6 цифру 9 и наоборот.)

Прислать комментарий     Решение

Задача 65974

Темы:   [ Задачи на проценты и отношения ]
[ Раскраски ]
[ Наглядная геометрия ]
Сложность: 3+
Классы: 6,7

Среди всех граней восьми одинаковых по размеру кубиков треть синие, а остальные – красные. Из этих кубиков сложили большой куб. Теперь среди видимых граней кубиков ровно треть – красные. Докажите, что из этих кубиков можно сложить куб, полностью красный снаружи.

Прислать комментарий     Решение

Задача 65976

Темы:   [ Текстовые задачи (прочее) ]
[ Уравнения в целых числах ]
[ Простые числа и их свойства ]
Сложность: 3+
Классы: 6,7

Группа туристов делит печенье. Если они разделят поровну две одинаковые пачки, останется одно лишнее печенье. А если разделят поровну три такие же пачки, останется 13 лишних печений. Сколько туристов в группе?

Прислать комментарий     Решение

Задача 65978

Темы:   [ Взвешивания ]
[ Задачи с неравенствами. Разбор случаев ]
[ Примеры и контрпримеры. Конструкции ]
[ Системы линейных уравнений ]
Сложность: 3+
Классы: 6,7

У аптекаря есть три гирьки, с помощью которых он одному покупателю отвесил 100 г йода, другому – 101 г мёда, а третьему – 102 г перекиси водорода. Гирьки он ставил всегда на одну чашу весов, а товар – на другую. Могло ли быть так, что каждая гирька легче 90 г?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 10]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .