ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 >> [Всего задач: 29]      



Задача 66071  (#1)

Тема:   [ Ребусы ]
Сложность: 3
Классы: 7,8,9

Замените в выражении  ABC = DEF  буквы цифрами так, чтобы равенство стало верным, использовав каждую цифру от 1 до 6 ровно один раз.
(ABC – двузначное число из цифр A и B, возведённое в степень C. Достаточно привести один способ замены.)

Прислать комментарий     Решение

Задача 66077  (#1)

Темы:   [ Десятичная система счисления ]
[ Уравнения в целых числах ]
Сложность: 3
Классы: 7,8,9

Найдите наибольшее натуральное число, все цифры в десятичной записи которого различны и которое уменьшается в 5 раз, если зачеркнуть первую цифру.

Прислать комментарий     Решение

Задача 66083  (#1)

Темы:   [ Квадратные уравнения. Теорема Виета ]
[ Доказательство от противного ]
Сложность: 3
Классы: 8,9,10

Квадратный трёхчлен  x² + bx + c  имеет два действительных корня. Каждый из трёх его коэффициентов увеличили на 1.
Могло ли оказаться, что оба корня трёхчлена также увеличились на 1?

Прислать комментарий     Решение

Задача 66089  (#1)

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 8,9,10,11

Найдите наименьшее натуральное число, кратное 80, в котором можно так переставить две его различные цифры, что получившееся число также будет кратно 80.

Прислать комментарий     Решение

Задача 66094  (#1)

Темы:   [ Арифметическая прогрессия ]
[ Геометрическая прогрессия ]
[ Разложение на множители ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 9,10,11

Даны две непостоянные прогрессии (an) и (bn), одна из которых арифметическая, а другая – геометрическая. Известно, что  a1 = b1a2 : b2 = 2  и
a4 : b4 = 8.  Чему может быть равно отношение  a3 : b3?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 >> [Всего задач: 29]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .