ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 585]      



Задача 60677

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 7,8,9,10

Докажите, что если  a ≡ b (mod m)  и   c ≡ d (mod m),  то
  а)  a + c ≡ b + d (mod m);   б)  ac ≡ bd (mod m).

Прислать комментарий     Решение

Задача 60730

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 8,9,10,11

Докажите, что класс a состоит из всех чисел вида  mt + a,  где t – произвольное целое число.

Прислать комментарий     Решение

Задача 60731

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 8,9,10,11

Докажите, что два класса a и b совпадают тогда и только тогда, когда  a ≡ b (mod m).

Прислать комментарий     Решение

Задача 76473

Темы:   [ Арифметика остатков (прочее) ]
[ Задачи с ограничениями ]
[ Правило произведения ]
Сложность: 2+
Классы: 8,9

Сколько существует таких пар целых чисел x, y, заключённых между 1 и 1000, что  x² + y²  делится на 7.

Прислать комментарий     Решение

Задача 88126

Темы:   [ Арифметика остатков (прочее) ]
[ Периодичность и непериодичность ]
[ Десятичная система счисления ]
Сложность: 2+
Классы: 6,7,8

На какую цифру оканчивается число 19891989? А на какие цифры оканчиваются числа 19891992, 19921989, 19921992?

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 585]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .