ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 [Всего задач: 30]      



Задача 111077

Темы:   [ Теорема синусов ]
[ Теорема о сумме квадратов диагоналей ]
Сложность: 4
Классы: 8,9

Найдите стороны паралелограмма ABCD , в котором радиусы окружностей, описанных около треугольников ABC и ABD , равны 13 и соответственно, а расстояние между центрами этих окружностей равно 10.
Прислать комментарий     Решение


Задача 54211

Темы:   [ Ромбы. Признаки и свойства ]
[ Теорема Пифагора (прямая и обратная) ]
[ Теорема о сумме квадратов диагоналей ]
Сложность: 3
Классы: 8,9

Высота ромба, проведённая из вершины тупого угла, делит его сторону на отрезки длины a и b. Найдите диагонали ромба.

Прислать комментарий     Решение

Задача 64432

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Ромбы. Признаки и свойства ]
[ Теорема о сумме квадратов диагоналей ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 3+
Классы: 9,10,11

На сторонах AB и CD прямоугольника ABCD отметили точки E и F, так что AFCE – ромб. Известно, что  АВ = 16,  ВС = 12.  Найдите EF.

Прислать комментарий     Решение

Задача 53086

Темы:   [ Пересекающиеся окружности ]
[ Теорема Пифагора (прямая и обратная) ]
[ Средняя линия трапеции ]
[ Теорема о сумме квадратов диагоналей ]
Сложность: 3+
Классы: 8,9

Две окружности радиусов   и   пересекаются в точке A. Расстояние между центрами окружностей равно 3. Через точку A проведена прямая, пересекающая окружности в точках B и C так, что  AB = AC  (точка B не совпадает с C). Найдите AB.

Прислать комментарий     Решение

Задача 108151

Темы:   [ Угол между касательной и хордой ]
[ Признаки и свойства параллелограмма ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Теорема о сумме квадратов диагоналей ]
Сложность: 3+
Классы: 8,9

Диагонали параллелограмма ABCD пересекаются в точке O. Окружность, проходящая через точки A, O, B касается прямой BC.
Докажите, что окружность, проходящая через точки B, O, C, касается прямой CD.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 [Всего задач: 30]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .