Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

Автор: Фольклор

B некотором треугольнике биссектрисы двух внутренних углов продолжили до пересечения с описанной окружностью и получили две равные хорды. Bерно ли, что треугольник равнобедренный?

Вниз   Решение


Диагонали вписанного четырехугольника ABCD пересекаются в точке K.
Докажите, что касательная в точке K к описанной окружности треугольника ABK, параллельна CD.

ВверхВниз   Решение


Какое наибольшее число белых и чёрных фишек можно расставить на шахматной доске так, чтобы на каждой горизонтали и на каждой вертикали белых фишек было ровно в два раза больше, чем чёрных?

ВверхВниз   Решение


Автор: Фольклор

Две окружности пересекаются в точках P и Q. Прямая, пересекающая отрезок PQ, последовательно пересекает эти окружности в точках A, B, C и D.
Докажите, что  ∠APB = ∠CQD.

ВверхВниз   Решение



Через середину ребра AB куба ABCDA1B1C1D1 с ребром, равным a, проведена плоскость, параллельная прямым BD1 и A1C1.

1) В каком отношении эта плоскость делит диагональ DB1?

2) Найдите площадь полученного сечения.

ВверхВниз   Решение


Даны многочлены P(x), Q(x). Известно, что для некоторого многочлена R(x, y) выполняется равенство  P(x) – P(y) = R(x, y)(Q(x) – Q(y)).
Докажите, что существует такой многочлен S(x), что  P(x) = S(Q(x)).

ВверхВниз   Решение


Доказать, что каковы бы ни были числа a, b, c, по крайней мере одно из уравнений
    a sin x + b cos x + c = 0,   2a tg x + b ctg x + 2c = 0
имеет решение.

ВверхВниз   Решение


Найдите все углы α , для которых набор чисел sinα , sin2α , sin3α совпадает с набором cosα , cos2α , cos3α .

ВверхВниз   Решение


Из натурального числа вычли сумму его цифр и получили 2007. Каким могло быть исходное число?

ВверхВниз   Решение


Найдите все такие простые числа p, что число  p² + 11  имеет ровно шесть различных делителей (включая единицу и само число).

ВверхВниз   Решение


На ребре единичного правильного тетраэдра взята точка, которая делит это ребро в отношении 1:2. Через эту точку провежены две плоскости, параллельные двум граням тетраэдра. Эти плоскости отсекают от тетраэдра две треугольные пирамиды. Найдите объём оставшейся части тетраэдра.

ВверхВниз   Решение


Внутри квадрата ABCD взята точка E. Пусть ET – высота треугольника ABE, K – точка пересечения прямых DT и AE, M – точка пересечения прямых CT и BE. Докажите, что отрезок KM – сторона квадрата, вписанного в треугольник ABE.

ВверхВниз   Решение


Прямая отсекает треугольник AKN от правильного шестиугольника ABCDEF так, что  AK + AN = AB.
Найдите сумму углов, под которыми отрезок KN виден из вершин шестиугольника  (∠KAN + ∠KBN + ∠KCN + ∠KDN + ∠KEN + ∠KFN).

ВверхВниз   Решение


В выпуклом шестиугольнике ABCDEF диагонали AD, BE и CF равны. Пусть P – точка пересечения диагналей AD и CF, R – точка пересечения диагоналей BE и CF, Q – точка пересечения диагоналей AD и BE. Известно, что  AP = PF,  BR = CR  и  DQ = EQ.  Докажите, что точки A, B, C, D, E и F лежат на одной окружности.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 1325]      



Задача 88018

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 2-
Классы: 5,6,7

На столе лежат в ряд пять монет: средняя  — вверх орлом, а остальные  — вверх решкой. Разрешается одновременно перевернуть три рядом лежащие монеты. Можно ли при помощи нескольких таких переворачиваний все пять монет положить вверх орлом?
Прислать комментарий     Решение


Задача 88113

Темы:   [ Ребусы ]
[ Криптография ]
Сложность: 2-
Классы: 5,6,7

Попробуйте прочесть слово, изображённое на рис. 1, пользуясь ключом (см. рис. 2).

Прислать комментарий     Решение

Задача 88127

Тема:   [ Взвешивания ]
Сложность: 2-
Классы: 5,6,7

Из набора гирек с массами 1, 2, ..., 101 г потерялась гирька массой 19 г. Можно ли оставшиеся 100 гирек разложить на две кучки по 50 гирек в каждой так, чтобы массы обеих кучек были одинаковы?
Прислать комментарий     Решение


Задача 88150

Тема:   [ Математическая логика (прочее) ]
Сложность: 2-
Классы: 5,6,7

Первый вторник месяца Митя провёл в Смоленске, а первый вторник после первого понедельника  — в Вологде. В следующем месяце Митя первый вторник провёл во Пскове, а первый вторник после первого понедельника  — во Владимире. Сможете ли вы определить, какого числа и какого месяца Митя был в каждом из городов?
Прислать комментарий     Решение


Задача 88172

Темы:   [ Ребусы ]
[ Арифметические действия. Числовые тождества ]
Сложность: 2-
Классы: 5,6,7

В равенстве 101 – 102 = 1 передвиньте одну цифру так, чтобы оно стало верным.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 1325]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .