Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Френкин Б.Р.

Борис Рафаилович Френкин (род. 1947) - кандидат физико-математических наук, сотрудник Московского центра непрерывного математического образования. Соавтор книг "Математика турниров" и "Задачи о турнирах". Член редколлегии сборника "Математическое просвещение", оргкомитета международного математического Турнира городов, жюри Всероссийской олимпиады по геометрии им. И.Ф.Шарыгина.

Фильтр
Сложность с по   Класс с по  
Выбрана 21 задача
Версия для печати
Убрать все задачи

При каком наибольшем натуральном m число $m! \cdot 2022!$ будет факториалом натурального числа?

Вниз   Решение


В треугольнике $ABC$ точки $O$ и $H$ – центр описанной окружности и ортоцентр соответственно. Известно, что $BH$ – биссектриса угла $ABO$. Отрезок из точки $O$, параллельный стороне $AB$, пересекает сторону $AC$ в точке $K$. Докажите, что $AH=AK$.

ВверхВниз   Решение


Вокруг равнобедренного треугольника ABC с основанием AB описана окружность и в точке B проведена касательная к ней. Из точки C проведён перпендикуляр CD к этой касательной, также проведены высоты AE и BF. Докажите, что точки D, E, F лежат на одной прямой.

ВверхВниз   Решение


Среди чисел  a + b,  a – b,  ab, a/b  два положительных и два отрицательных. Является ли число b положительным или отрицательным?

ВверхВниз   Решение


В школе провели турнир по настольному теннису. Турнир состоял из нескольких туров. В каждом туре каждый участник играл ровно в одном матче, а каждый матч судил один из не участвовавших в нем игроков.

После нескольких туров оказалось, что каждый участник сыграл по одному разу с каждым из остальных. Может ли оказаться, что все участники турнира судили одинаковое количество встреч?

ВверхВниз   Решение


В строку выписано 81 ненулевое число. Сумма любых двух соседних чисел положительна, а сумма всех чисел отрицательна. Каким может быть знак произведения всех чисел?

ВверхВниз   Решение


Имеется 5 ненулевых чисел. Для каждых двух из них вычислены их сумма и произведение. Оказалось, что пять сумм положительны и пять сумм отрицательны. Сколько произведений положительны и сколько – отрицательны?

ВверхВниз   Решение


Дан четырёхугольник ABCD, в котором  AC = BD = AD;  точки E и F – середины AB и CD соответственно; O – точка пересечения диагоналей четырёхугольника. Докажите, что EF проходит через точки касания вписанной окружности треугольника AOD с его сторонами AO и OD.

ВверхВниз   Решение


Геометрическая прогрессия состоит из 37 натуральных чисел. Первый и последний члены прогрессии взаимно просты.
Докажите, что 19-й член прогрессии является 18-й степенью натурального числа.

ВверхВниз   Решение


В пятиугольнике ABCDE углы ABC и AED – прямые,  AB = AE  и  BC = CD = DE.  Диагонали BD и CE пересекаются в точке F.
Докажите, что  FA = AB.

ВверхВниз   Решение


Из некоторой точки D в плоскости треугольника ABC провели прямые, перпендикулярные к отрезкам DA, DB, DC, которые пересекают прямые BC, AC, AB в точках A1, B1, C1 соответственно. Докажите, что середины отрезков AA1, BB1, CC1 лежат на одной прямой.

ВверхВниз   Решение


В строку выписано 39 чисел, не равных нулю. Сумма любых двух соседних чисел положительна, а сумма всех чисел отрицательна. Каким может быть знак произведения всех чисел? (Укажите все варианты и докажите, что других нет.)

ВверхВниз   Решение


Дан прямоугольный треугольник $ABC$ с прямым углом $C$, вне треугольника взята точка $D$, так что $\angle ADC=\angle BAC$ и отрезок $CD$ пересекает гипотенузу $AB$ в точке $E$. Известно, что расстояние от точки $E$ до катета $AC$ равно радиусу описанной окружности треугольника $ADE$. Найдите углы треугольника $ABC$.

ВверхВниз   Решение


В остроугольном неравнобедренном треугольнике ABC высоты CC1 и BB1 пересекают прямую, проходящую через вершину A и параллельную прямой BC, в точках P и Q. Пусть A0 – середина стороны BC, а AA1 – высота. Прямые A0C1 и A0B1 пересекают прямую PQ в точках K и L. Докажите, что описанные окружности треугольников PQA1, KLA0, A1B1C1 и окружность с диаметром AA1 пересекаются в одной точке.

ВверхВниз   Решение


У равносторонних треугольников $ABC$ и $CDE$ вершина $C$ лежит на отрезке $AE$, вершины $B$ и $D$ по одну сторону от этого отрезка. Описанные около треугольников окружности с центрами $O_1$ и $O_2$ повторно пересекаются в точке $F$. Прямая $O_1O_2$ пересекает $AD$ в точке $K$. Докажите, что $AK=BF$.

ВверхВниз   Решение


Пятиугольник ABCDE вписан в окружность, причём  ∠B + ∠E = ∠C + ∠D.  Докажите, что  ∠CAD < π/3 < ∠A.

ВверхВниз   Решение


Вокруг прямоугольного треугольника ABC с прямым углом C описана окружность, на меньших дугах AC и BC взяты их середины – K и P соответственно. Отрезок KP пересекает катет AC в точке N. Центр вписанной окружности треугольника ABC – I. Найти угол NIC.

ВверхВниз   Решение


На трёх красных и трёх синих карточках написаны шесть положительных чисел, все они различны. Известно, что на карточках какого-то одного цвета написаны попарные суммы каких-то трёх чисел, а на карточках другого цвета – попарные произведения тех же трёх чисел. Всегда ли можно гарантированно определить эти три числа?

ВверхВниз   Решение


Сумма трёх положительных чисел равна их произведению. Докажите, что хотя бы два из них больше единицы.

ВверхВниз   Решение


Диагонали прямоугольника $ABCD$ пересекаются в точке $E$. Окружность с центром в точке $E$ лежит внутри прямоугольника. Из вершин $C$, $D$, $A$ проведены касательные к окружности $CF$, $DG$, $AH$, причем $CF$ пересекает $DG$ в точке $I$, $EI$ пересекает $AD$ в точке $J$, а прямые $AH$ и $CF$ пересекаются в точке $L$. Докажите, что отрезок $LJ$ перпендикулярен $AD$.

ВверхВниз   Решение


Сто друзей, среди которых есть Петя и Вася, живут в нескольких городах. Петя узнал расстояние от своего города до города каждого из оставшихся 99 друзей и сложил эти 99 чисел. Аналогично поступил Вася. Петя получил 1000 км. Какое наибольшее число мог получить Вася? (Города считайте точками плоскости; если двое живут в одном и том же городе, расстояние между их городами считается равным нулю.)

Вверх   Решение

Все задачи автора

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 183]      



Задача 67152

Тема:   [ Свойства модуля. Неравенство треугольника ]
Сложность: 3
Классы: 7,8,9

Сто друзей, среди которых есть Петя и Вася, живут в нескольких городах. Петя узнал расстояние от своего города до города каждого из оставшихся 99 друзей и сложил эти 99 чисел. Аналогично поступил Вася. Петя получил 1000 км. Какое наибольшее число мог получить Вася? (Города считайте точками плоскости; если двое живут в одном и том же городе, расстояние между их городами считается равным нулю.)
Прислать комментарий     Решение


Задача 105175

Темы:   [ Задачи на проценты и отношения ]
[ Четность и нечетность ]
Сложность: 3
Классы: 7,8,9

Курс акций компании "Рога и копыта" каждый день в 12.00 повышается или понижается на 17% (курс не округляется).
Может ли курс акций дважды принять одно и то же значение?

Прислать комментарий     Решение

Задача 109500

Тема:   [ Задачи на проценты и отношения ]
Сложность: 3
Классы: 7,8,9

За первый год население некоторой деревни возросло на n человек, а за второй – на 300 человек. При этом за первый год население увеличилось на 300%, а за второй – на n %. Сколько жителей стало в деревне?

Прислать комментарий     Решение

Задача 111640

Тема:   [ Квадратные уравнения. Теорема Виета ]
Сложность: 3
Классы: 8,9,10

Существуют ли такие три числа, что если их поставить в одном порядке в качестве коэффициентов квадратного трёхчлена, то он имеет два положительных корня, а если в другом – два отрицательных?

Прислать комментарий     Решение

Задача 115765

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Треугольники с углами $60^\circ$ и $120^\circ$ ]
Сложность: 3
Классы: 8,9,10,11

Треугольник разрезан на несколько (не менее двух) треугольников. Один из них равнобедренный (не равносторонний), а остальные – равносторонние. Найдите углы исходного треугольника.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 183]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .