Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Заславский А.А.

Алексей Александрович Заславский (род.1960 г.) - к.т.н. (1990), старший научный сотрудник ЦЭМИ РАН, председатель жюри олимпиады им. Шарыгина, редактор Journal of Classical Geometry, член редколлегии "Кванта".

Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Биссектрисы AA1 и BB1 треугольника ABC пересекаются в точке I. На отрезках A1I и B1I построены как на основаниях равнобедренные треугольники с вершинами A2 и B2, лежащими на прямой AB. Известно, что прямая CI делит отрезок A2B2 пополам. Верно ли, что треугольник ABC – равнобедренный?

Вниз   Решение


Несколько прямых, никакие две из которых не параллельны, разрезают плоскость на части. Внутри одной из этих частей отметили точку A.
Докажите, что точка, лежащая с A по разные стороны от всех данных прямых, существует тогда и только тогда, когда часть, содержащая A, неограничена.

ВверхВниз   Решение


У Незнайки есть пять карточек с цифрами: 1, 2, 3, 4 и 5. Помогите ему составить из этих карточек два числа – трёхзначное и двузначное – так, чтобы первое число делилось на второе.

ВверхВниз   Решение


Дана окружность с центром в начале координат.
Докажите, что найдётся окружность меньшего радиуса, на которой лежит не меньше точек с целыми координатами.

ВверхВниз   Решение


Верно ли, что любой многоугольник можно разрезать на равнобокие трапеции?

ВверхВниз   Решение


Бумажный прямоугольный треугольник АВС перегнули по прямой так, что вершина С прямого угла совместилась с вершиной В и получился четырёхугольник. В каких отношениях точка пересечения диагоналей четырёхугольника делит эти диагонали?

ВверхВниз   Решение


Докажите, что в прямоугольном треугольнике ортоцентр треугольника, образованного точками касания сторон с вписанной окружностью, лежит на высоте, проведённой из прямого угла.

Вверх   Решение

Все задачи автора

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 204]      



Задача 65198

Темы:   [ Турниры и турнирные таблицы ]
[ Средние величины ]
Сложность: 4-
Классы: 9,10

В турнире по футболу участвует 2n команд  (n > 1).  В каждом туре команды разбиваются на n пар и команды в каждой паре играют между собой. Так провели  2n – 1  тур, по окончании которых каждая команда сыграла с каждой ровно один раз. За победу давалось 3 очка, за ничью – 1, за поражение – 0 очков. Оказалось, что для каждой команды отношение набранных ею очков к количеству сыгранных ею игр после последнего тура не изменилось. Докажите, что все команды сыграли вничью все партии.

Прислать комментарий     Решение

Задача 65368

Темы:   [ Метод ГМТ ]
[ Вписанные четырехугольники (прочее) ]
[ Точка Микеля ]
Сложность: 4-
Классы: 9,10,11

Дан выпуклый четырёхугольник. Постройте циркулем и линейкой точку, проекции которой на прямые, содержащие его стороны, являются вершинами параллелограмма.

Прислать комментарий     Решение

Задача 65564

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Векторы помогают решить задачу ]
Сложность: 4-
Классы: 9,10,11

Окружность с центром I лежит внутри окружности с центром O. Найдите геометрическое место центров описанных окружностей треугольников IAB, где AB – хорда большей окружности, касающаяся меньшей.

Прислать комментарий     Решение

Задача 65678

Темы:   [ Правильный (равносторонний) треугольник ]
[ Свойства симметрий и осей симметрии ]
[ Вписанный угол равен половине центрального ]
Сложность: 4-
Классы: 8,9,10,11

Внутри выпуклого четырехугольника A1A2B2B1 нашлась такая точка C, что треугольники CA1A2 и CB2B1 – правильные. Точки C1 и C2 симметричны точке C относительно прямых A2B2 и A1B1 соответственно. Докажите, что треугольники A1B1C1 и A2B2C2 подобны.

Прислать комментарий     Решение

Задача 65869

Темы:   [ Ортоцентр и ортотреугольник ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Симметрия помогает решить задачу ]
[ Вписанный угол равен половине центрального ]
[ Признаки и свойства параллелограмма ]
Сложность: 4-
Классы: 9,10,11

Докажите, что в прямоугольном треугольнике ортоцентр треугольника, образованного точками касания сторон с вписанной окружностью, лежит на высоте, проведённой из прямого угла.

Прислать комментарий     Решение

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 204]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .