Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Заславский А.А.

Алексей Александрович Заславский (род.1960 г.) - к.т.н. (1990), старший научный сотрудник ЦЭМИ РАН, председатель жюри олимпиады им. Шарыгина, редактор Journal of Classical Geometry, член редколлегии "Кванта".

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 204]      



Задача 64737

Темы:   [ Построение треугольников по различным точкам ]
[ Вписанные и описанные окружности ]
[ Инверсия помогает решить задачу ]
[ Радикальная ось ]
[ Точка Лемуана ]
[ Угол между касательной и хордой ]
[ Подерный (педальный) треугольник ]
[ Гомотетия: построения и геометрические места точек ]
Сложность: 5-
Классы: 8,9,10

В треугольнике ABC отметили точки A', B' касания сторон BC, AC c вписанной окружностью и точку G пересечения отрезков AA' и BB'. После этого сам треугольник стерли. Восстановите его с помощью циркуля и линейки.

Прислать комментарий     Решение

Задача 64881

Темы:   [ Описанные четырехугольники ]
[ Три точки, лежащие на одной прямой ]
[ Инверсия помогает решить задачу ]
[ Точка Лемуана ]
Сложность: 5-
Классы: 10,11

Четырёхугольник ABCD описан около окружности с центром I. Касательные к описанной окружности треугольника AIC в точках A, C пересекаются в точке X. Касательные к описанной окружности треугольника BID в точках B, D пересекаются в точке Y. Докажите, что точки X, I, Y лежат на одной прямой.

Прислать комментарий     Решение

Задача 64921

Темы:   [ Пересекающиеся окружности ]
[ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Формула Эйлера ]
[ Теоремы Чевы и Менелая ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 5-
Классы: 9,10,11

Две окружности радиуса 1 пересекаются в точках X, Y, расстояние между которыми тоже равно 1. Из точки C одной окружности проведены к другой касательные CA, CB, вторично пересекающие первую окружность в точках B', A'. Прямые AA' и BB' пересекаются в точке Z. Найдите угол XZY.

Прислать комментарий     Решение

Задача 64977

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Биссектриса угла (ГМТ) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 5-
Классы: 9,10,11

Четырёхугольник ABCD вписан в окружность с центром O. Биссектрисы его углов образуют четырёхугольник, вписанный в окружность с центром I, а биссектрисы внешних углов – четырёхугольник, вписанный в окружность с центром J. Докажите, что O – середина отрезка IJ.

Прислать комментарий     Решение

Задача 65046

Темы:   [ Описанные четырехугольники ]
[ Вписанные четырехугольники (прочее) ]
[ Три точки, лежащие на одной прямой ]
[ Теорема о группировке масс ]
[ Две касательные, проведенные из одной точки ]
[ Ромбы. Признаки и свойства ]
[ Отношения линейных элементов подобных треугольников ]
Сложность: 5-
Классы: 9,10,11

Четырёхугольник ABCD описан около окружности с центром I. Точки M и N – середины диагоналей AC и BD.
Докажите, что четырёхугольник ABCD – вписанный тогда и только тогда, когда  IM : AC = IN : BD.

Прислать комментарий     Решение

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 204]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .