ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() Григорий Александрович Гальперин - российский и американский математик, автор популярных книг "Московские математические олимпиады" и "Математические бильярды". |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Из целых чисел от 1 до 100 удалили k чисел. Обязательно ли среди оставшихся чисел можно выбрать k различных чисел с суммой 100, если Даны целые числа $a_{1}, ..., a_{1000}$. По кругу записаны их квадраты $a_{1}^2, ..., a_{1000}^2$. Сумма каждых 41 подряд идущих квадратов на круге делится на $41^2$. Можно ли целые числа от 1 до 2004 расставить в некотором порядке так, чтобы сумма каждых десяти подряд стоящих чисел делилась на 10? Многочлен $P(x, y)$ таков, что для всякого целого $n\geqslant 0$ каждый из многочленов $P(n, y)$ и $P(x, n)$ либо тождественно равен нулю, либо имеет степень не выше $n$. На координатной плоскости нарисованы четыре графика функций вида y = x² + ax + b, где a, b – числовые коэффициенты. Известно, что есть ровно четыре точки пересечения, причём в каждой пересекаются ровно два графика. Докажите, что сумма наибольшей и наименьшей из абсцисс точек пересечения равна сумме двух других абсцисс. Грани икосаэдра окрасили в пять цветов (среди которых есть красный и синий) так, что две грани, окрашенные в один цвет, не имеют общих точек, даже вершин. Докажите, что для любой точки внутри икосаэдра сумма расстояний от нее до красных граней равна сумме расстояний до синих граней. Алёша задумал натуральные числа $a, b, c$, а потом решил найти такие натуральные $x, y, z$, что $a$ = НОК($x, y), b$ = НОК($x, z), c$ = НОК($y, z$). Оказалось, что такие $x, y, z$ существуют и определены однозначно. Алёша рассказал об этом Боре и сообщил ему только числа $a$ и $b$. Докажите, что Боря может восстановить $c$. Имеются абсолютно точные двухчашечные весы и набор из 50 гирь, веса которых равны $\operatorname{arctg} 1$, $\operatorname{arctg} \frac{1}{2}$, $\operatorname{arctg} \frac{1}{3}$, $\ldots$, $\operatorname{arctg}\frac{1}{50}$. Докажите, что можно выбрать 10 из них и разложить по 5 гирь на разные чаши весов так, чтобы установилось равновесие. На экране суперкомпьютера напечатано число $11\ldots 1$ ($900$ единиц). Каждую секунду суперкомпьютер заменяет его по следующему правилу. Число записывается в виде $\overline{AB}$, где $B$ состоит из двух его последних цифр, и заменяется на $2\cdot A + 8\cdot B$ (если $B$ начинается на нуль, то он при вычислении опускается). Например, $305$ заменяется на $2\cdot 3 + 8 \cdot 5 = 46$. Если на экране остаётся число, меньшее $100$, то процесс останавливается. Правда ли, что он остановится? Для каждого натурального числа n обозначим через O(n) его наибольший нечётный делитель. Даны произвольные натуральные числа Известно, что если у правильного $N$-угольника, находящегося внутри окружности, продлить все стороны до пересечения с этой окружностью, то $2N$ добавленных к сторонам отрезков можно разбить на две группы с одинаковой суммой длин. А верно ли аналогичное утверждение для находящегося внутри сферы а) произвольного куба; б) произвольного правильного тетраэдра? (Каждое ребро продлевают в обе стороны до пересечения со сферой. В итоге к каждому ребру добавляется по отрезку с обеих сторон. Требуется покрасить каждый из них либо в красный, либо в синий цвет, чтобы сумма длин красных отрезков была равна сумме длин синих.) |
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 82]
Даны выпуклый многогранник и сфера, которая пересекает каждое ребро многогранника в двух точках. Точки пересечения со сферой делят каждое ребро на три равных отрезка. Обязательно ли тогда все грани многогранника:
Известно, что если у правильного $N$-угольника, находящегося внутри окружности, продлить все стороны до пересечения с этой окружностью, то $2N$ добавленных к сторонам отрезков можно разбить на две группы с одинаковой суммой длин. А верно ли аналогичное утверждение для находящегося внутри сферы а) произвольного куба; б) произвольного правильного тетраэдра? (Каждое ребро продлевают в обе стороны до пересечения со сферой. В итоге к каждому ребру добавляется по отрезку с обеих сторон. Требуется покрасить каждый из них либо в красный, либо в синий цвет, чтобы сумма длин красных отрезков была равна сумме длин синих.)
Сколько в выпуклом многоугольнике может быть сторон, равных наибольшей диагонали?
Для каждого натурального числа n обозначим через O(n) его наибольший нечётный делитель. Даны произвольные натуральные числа
Гриша записал на доске 100 чисел. Затем он увеличил каждое число на 1 и заметил, что произведение всех 100 чисел не изменилось. Он опять увеличил каждое число на 1, и снова произведение всех чисел не изменилось, и так далее. Всего Гриша повторил эту процедуру k раз, и все k раз произведение чисел не менялось. Найдите наибольшее возможное значение k.
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 82]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке