ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||
Версия для печати
Убрать все задачи Паутина имеет вид клетчатой сетки 100×100 узлов (другими словами, это сетка 99×99 клеток). В каком-то её углу сидит паук, а в некоторых 100 узлах к паутине приклеились мухи. За ход паук может переместиться в любой соседний с ним узел. Может ли паук гарантированно съесть всех мух, затратив не более Графики квадратного трёхчлена и его производной разбивают координатную плоскость на четыре части. Сколько корней имеет этот квадратный трёхчлен? Решите уравнение $$ x^3+(\log_25+\log_32+\log_53) x=(\log_23+\log_35+\log_52) x^2+1. $$ В равнобедренной трапеции проведена диагональ. По контуру каждого из получившихся двух треугольников ползёт свой жук. Скорости движения жуков постоянны и одинаковы. Жуки не меняют направления обхода своих контуров, и по диагонали трапеции они ползут в разных направлениях. Докажите, что при любых начальных положениях жуков они когда-нибудь встретятся. Четыре окружности радиуса R пересекаются по три в точках M и N, и по две в точках A, B, C и D. Докажите что ABCD — параллелограмм.
Остроугольный треугольник $ABC$ вписан в окружность $\Omega$. Пусть $H$ и $M$ – точка пересечения высот и середина стороны $BC$ соответственно. Прямая $HM$ пересекает окружность $\omega$, описанную около треугольника $BHC$, в точке $N\not=H$. На дуге $BC$ окружности $\omega$, не содержащей точку $H$, нашлась точка $P$ такая, что $\angle HMP=90^{\circ}$. Отрезок $PM$ пересекает $\Omega$ в точке $Q$. Точки $B'$ и $C'$ симметричны точке $A$ относительно точек $B$ и $C$ соответственно. Докажите, что описанные окружности треугольников $AB'C'$ и $PQN$ касаются. Многоугольник, описанный около окружности радиуса r,
разрезан на треугольники (произвольным образом). Докажите, что сумма
радиусов вписанных окружностей этих треугольников больше r.
|
Страница: 1 [Всего задач: 2]
Дан неравнобедренный остроугольный треугольник ABC, BB1 – его симедиана, луч BB1 вторично пересекает описанную окружность Ω в точке L. Пусть HA, HB, HC – основания высот треугольника ABC, а луч BHB вторично пересекает Ω в точке T. Докажите, что точки HA, HC, T, L лежат на одной окружности.
Многоугольник, описанный около окружности радиуса r,
разрезан на треугольники (произвольным образом). Докажите, что сумма
радиусов вписанных окружностей этих треугольников больше r.
Страница: 1 [Всего задач: 2]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке