ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() Алексей Яковлевич Канель-Белов (род. 1963) - известный российский математик, педагог и составитель олимпиадных задач. Доктор физико-математических наук, профессор МИОО и Бар-Иланского университета. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Какое наименьшее число карточек спортлото (6 из 49) надо купить, чтобы наверняка хоть в одной из них был угадан хоть один номер? Существуют ли такие натуральные n и k, что десятичная запись числа 2n начинается числом 5k, а десятичная запись числа 5n начинается числом 2k? На плоскости расположен квадрат и невидимыми чернилами нанесена точка P. Человек в специальных очках видит точку. Если провести прямую, то он отвечает на вопрос, по какую сторону от неё лежит P (если P лежит на прямой, то он говорит, что P лежит на прямой). Имеется железная гиря в 6 кг, сахар и невесомые пакеты в неограниченном количестве, а также нестандартные весы с двумя чашами: весы находятся в равновесии, если грузы на левой и правой чашах относятся как 3 : 4. За одно взвешивание можно положить на весы любые уже имеющиеся грузы и добавить на одну из чаш пакет с таким количеством сахара, чтобы чаши уравновесились (такие пакеты с сахаром можно использовать при дальнейших взвешиваниях). Удастся ли отмерить 1 кг сахара? Положительные числа A, B, C и D таковы, что система уравнений В ряд выписаны действительные числа a1, a2, a3, ..., a1996. Докажите, что можно выделить одно или несколько стоящих рядом чисел так, что их сумма будет отличаться от целого числа меньше, чем на 0,001. Отрезки $AA', BB'$ и $CC'$ с концами на сторонах остроугольного треугольника $ABC$ пересекаются в точке $P$ внутри треугольника. На каждом из этих отрезков как на диаметре построена окружность, в которой перпендикулярно этому диаметру проведена хорда через точку $P$. Оказалось, что три проведённые хорды имеют одинаковую длину. Докажите, что $P$ – точка пересечения высот треугольника $ABC$. Дан отрезок длины В компанию из n человек пришёл журналист. Ему известно, что в этой компании есть человек Z, который знает всех остальных членов компании, но его не знает никто. Журналист может к каждому члену компании обратиться с вопросом: "Знаете ли вы такого-то?" Существует ли такое натуральное n, что десятичная запись числа 2n начинается цифрой 5, а десятичная запись числа 5n начинается цифрой 2? Можно ли разбить все пространство на правильные тетраэдры и октаэдры? |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 101]
На плоскости расположен квадрат и невидимыми чернилами нанесена точка P. Человек в специальных очках видит точку. Если провести прямую, то он отвечает на вопрос, по какую сторону от неё лежит P (если P лежит на прямой, то он говорит, что P лежит на прямой).
Двое играют в крестики-нолики на доске 10×10 по следующим правилам. Сначала они заполняют крестиками и ноликами всю доску, ставя их по очереди (начинающий игру ставит крестики, его партнер – нолики). Затем подсчитываются два числа: K – число пятерок подряд стоящих крестиков и H – число пятерок подряд стоящих ноликов. (Считаются пятерки, стоящие по горизонтали, по вертикали и параллельно диагонали; если подряд стоят шесть крестиков, то это даёт две пятерки, если семь, то три и т. д.) Число K – H считается выигрышем первого игрока (проигрышем второго).
В ряд выписаны действительные числа a1, a2, a3, ..., a1996. Докажите, что можно выделить одно или несколько стоящих рядом чисел так, что их сумма будет отличаться от целого числа меньше, чем на 0,001.
Можно ли разбить все пространство на правильные тетраэдры и октаэдры?
Можно ли бумажный круг с помощью ножниц перекроить в квадрат той же площади?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 101]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке