Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 79]
|
|
Сложность: 4 Классы: 9,10,11
|
Секущая пересекает первую окружность в точках $A_1, B_1$, а вторую – в точках $A_2, B_2$. Вторая секущая пересекает первую окружность в точках $C_1, D_1$, а вторую – в точках $C_2, D_2$. Докажите, что точки
$A_1C_1\cap B_2D_2$, $A_1C_1\cap A_2C_2$, $A_2C_2\cap B_1D_1$, $B_2D_2\cap B_1D_1$ лежат на одной окружности, соосной с данными двумя.
|
|
Сложность: 4 Классы: 9,10,11
|
Дан треугольник ABC. В нём H – точка пересечения высот,
I – центр вписанной окружности, O – центр описанной
окружности, K – точка касания вписанной окружности со стороной BC. Известно, что отрезки IO || BC. Докажите, что отрезки AO || HK.
В треугольнике ABC через O, I обозначены центры описанной и вписанной окружностей соответственно. Вневписанная окружность ωa касается продолжений сторон AB и AC в точках K и M соответственно, а стороны BC – в точке N. Известно, что середина P отрезка KM лежит на описанной окружности треугольника ABC. Докажите, что точки O, N и I лежат на одной прямой.
На диагонали AC ромба ABCD взята произвольная точка E, отличная от точек A и C, а на прямых AB и BC
– точки N и M соответственно, причём
AE = NE и CE = ME. Пусть K – точка пересечения прямых AM и CN. Докажите, что точки K, E и D лежат на одной прямой.
|
|
Сложность: 4 Классы: 8,9,10
|
Дан биллиард в форме правильного 1998-угольника A1A2...A1998. Из середины стороны A1A2 выпустили шар, который, отразившись последовательно от сторон A2A3, A3A4, ..., A1998A1 (по закону "угол падения равен углу отражения"), вернулся в исходную точку. Докажите, что траектория шара – правильный 1998-угольник.
Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 79]