ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Кожевников П.А.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 79]      



Задача 65234

Темы:   [ Сферы (прочее) ]
[ Пересекающиеся окружности ]
[ Перпендикулярные плоскости ]
[ Окружности на сфере ]
Сложность: 4+
Классы: 10,11

В пространстве дан треугольник ABC и сферы S1 и S2, каждая из которых проходит через точки A, B и C. Для точек M сферы S1, не лежащих в плоскости треугольника ABC, проводятся прямые MA, MB и MC, пересекающие сферу S2 вторично в точках A1, B1 и C1 соответственно. Докажите, что плоскости, проходящие через точки A1, B1 и C1, касаются фиксированной сферы либо проходят через фиксированную точку.

Прислать комментарий     Решение

Задача 65566

Темы:   [ Поворот (прочее) ]
[ Симметрия помогает решить задачу ]
[ Инверсия помогает решить задачу ]
[ Окружность Аполлония ]
Сложность: 4+
Классы: 9,10,11

Углы AOB и COD совмещаются поворотом так, что луч OA совмещается с лучом OC, а луч OB – с OD. В них вписаны окружности, пересекающиеся в точках E и F. Доказать, что углы AOE и DOF равны.

Прислать комментарий     Решение

Задача 111862

Темы:   [ Взвешивания ]
[ Делимость чисел. Общие свойства ]
[ Оценка + пример ]
Сложность: 4+
Классы: 9,10,11

Пете и Васе подарили одинаковые наборы из N гирь, в которых массы любых двух гирь различаются не более, чем в 1,25 раз. Пете удалось разделить все гири своего набора на 10 равных по массе групп, а Васе удалось разделить все гири своего набора на 11 равных по массе групп. Найдите наименьшее возможное значение N.

Прислать комментарий     Решение

Задача 67221

Темы:   [ Ортоцентр и ортотреугольник ]
[ Вписанные и описанные окружности ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4+
Классы: 8,9,10,11

В треугольнике $ABC$ проведены высоты $AH_A$ и $BH_B$. Прямая $H_AH_B$ пересекает описанную окружность треугольника $ABC$ в точках $P$ и $Q$. Точка $A'$ симметрична точке $A$ относительно $BC$, точка $B'$ симметрична точке $B$ относительно $CA$. Докажите, что $A', B'$, $P$, $Q$ лежат на одной окружности.
Прислать комментарий     Решение


Задача 67107

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Инверсия помогает решить задачу ]
[ Радикальная ось ]
Сложность: 4+
Классы: 9,10,11

В окружности $\Omega $ хорды $A_1A_2$, $A_3A_4$, $A_5A_6$ пересекаются в точке $O$. Пусть $B_i$ – вторая точка пересечения окружности $\Omega$ с окружностью, построенной на отрезке $OA_i$ как на диаметре. Докажите, что хорды $B_1B_2$, $B_3B_4$, $B_5B_6$ пересекаются в одной точке.
Прислать комментарий     Решение


Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 79]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .