ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В треугольнике ABC провели биссектрису CL. В треугольники CAL и CBL вписали окружности, которые касаются прямой AB в точках M и N соответственно. Затем все, кроме точек A, L, M и N, стерли. С помощью циркуля и линейки восстановите треугольник. Пусть P – точка пересечения диагоналей четырёхугольника ABCD, M – точка пересечения прямых, соединяющих середины его противоположных сторон, O – точка пересечения серединных перпендикуляров к диагоналям, H – точка пересечения прямых, соединяющих ортоцентры треугольников APD и BPC, APB и CPD. Доказать, что M – середина OH. У квадратного уравнения x² + px + q = 0 коэффициенты p и q увеличили на единицу. Эту операцию повторили четыре раза. Приведите пример такого исходного уравнения, что у каждого из пяти полученных уравнений корни были бы целыми числами. Малыш и Карлсон режут квадратный торт. Карлсон выбирает на нём точку (не на границе). После этого Малыш делает прямолинейный разрез от выбранной точки до края (в любом направлении). Затем Карлсон проводит второй прямолинейный разрез от выбранной точки до края, перпендикулярный первому, и отдаёт меньший из получившихся двух кусков Малышу. Малыш хочет получить хотя бы четверть торта. Может ли Карлсон ему помешать? Для заданных натуральных чисел
k0<k1<k2 выясните,
какое наименьшее число корней на промежутке sin(k0x)+A1·sin(k1x) +A2·sin(k2x)=0 где A1, A2 – вещественные числа.Докажите, что при аффинном преобразовании параллельные прямые
переходят в параллельные.
Дан правильный треугольник ABC. Некоторая прямая, параллельная прямой AC, пересекает прямые AB и BC в точках M и P соответственно. Точка D — центр правильного треугольника PMB, точка E — середина отрезка AP. Найдите углы треугольника DEC.
|
Страница: 1 2 >> [Всего задач: 8]
Докажите, что в арифметической прогрессии с первым членом, равным 1, и разностью, равной 729, найдётся бесконечно много членов, являющихся степенью числа 10.
Два треугольника A1B1C1 и A2B2C2, площади которых равны соответственно S1 и S2, расположены так, что лучи A1B1 и A2B2, B1C1 и B2C2, C1A1 и C2A2 противоположно направлены. Найдите площадь треугольника с вершинами в серединах отрезков A1A2, B1B2, C1C2.
На плоскости расположены три окружности Ω1, Ω2, Ω3 радиусов r1, r2, r3 соответственно – каждая вне двух других, причём r1 > r2 и r1 > r3. Из точки пересечения общих внешних касательных к окружностям Ω1 и Ω2 проведены касательные к окружности Ω3, а из точки пересечения общих внешних касательных к окружностям Ω1 и Ω3 проведены касательные к окружности Ω2. Докажите, что последние две пары касательных образуют четырёхугольник, в который можно вписать окружность, и найдите её радиус.
Из центра симметрии двух равных пересекающихся окружностей проведены два луча, пересекающие окружности в четырех точках, не лежащих на одной прямой. Докажите, что эти точки лежат на одной окружности.
Дан правильный треугольник ABC. Некоторая прямая, параллельная прямой AC, пересекает прямые AB и BC в точках M и P соответственно. Точка D — центр правильного треугольника PMB, точка E — середина отрезка AP. Найдите углы треугольника DEC.
Страница: 1 2 >> [Всего задач: 8]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке