ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Фролов И.И.

Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

На плоскости нарисованы две окружности (см. рис.). Существует ли некоторая точка, лежащая вне каждой из этих окружностей, для которой любая прямая, проходящая через неё, пересекает хотя бы одну из окружностей?

Вниз   Решение


Можно ли таблицу 5×5 заполнить числами так, чтобы сумма чисел в каждой строке была положительной, а сумма чисел в каждом столбце – отрицательной?

Вверх   Решение

Все задачи автора

Страница: 1 2 3 >> [Всего задач: 15]      



Задача 67093

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Вспомогательные подобные треугольники ]
[ Вспомогательные проекции ]
Сложность: 3+
Классы: 8,9,10

На сторонах $AB$, $BC$, $CA$ треугольника $ABC$ выбраны точки $P$, $Q$, $R$ соответственно так, что $AP=PR$, $CQ=QR$. Точка $H$ – ортоцентр треугольника $PQR$, точка $O$ – центр описанной окружности треугольника $ABC$. Докажите, что $OH \parallel AC$.
Прислать комментарий     Решение


Задача 65801

Темы:   [ Вписанные и описанные окружности ]
[ Три точки, лежащие на одной прямой ]
[ Угол между касательной и хордой ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Теоремы Чевы и Менелая ]
Сложность: 4
Классы: 9,10,11

Дан треугольник ABC и прямая l, пересекающая прямые BC, AC, AB в точках La, Lb, Lc. Перпендикуляр, восставленный из точки La к BC, пересекает AB и AC в точках Ab и Ac соответственно. Точка Oa – центр описанной окружности треугольника AAbAc. Аналогично определим Ob и Oc. Докажите, что Oa, Ob и Oc лежат на одной прямой.

Прислать комментарий     Решение

Задача 66796

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательные подобные треугольники ]
Сложность: 4
Классы: 8,9,10,11

В остроугольном треугольнике $ABC$ точки $O$ и $H$ – центр описанной окружности и ортоцентр соответственно, $AB < AC$. Прямая, проходящая через середину $K$ отрезка $AH$ и перпендикулярная $OK$, пересекает сторону $AB$ и касательную к описанной окружности в точке $A$ в точках $X$ и $Y$ соответственно. Докажите, что $\angle XOY=\angle AOB$.
Прислать комментарий     Решение


Задача 66971

Темы:   [ Гомотетия помогает решить задачу ]
[ Точка Торричелли ]
Сложность: 4
Классы: 8,9,10

Внутри остроугольного неравнобедренного треугольника $ABC$ отмечена точка $T$, такая что $\angle ATB = \angle BTC = 120^\circ$. Окружность с центром $E$ проходит через середины сторон треугольника $ABC$. Оказалось, что точки $B,T,E$ лежат на одной прямой. Найдите угол $ABC$.
Прислать комментарий     Решение


Задача 66975

Темы:   [ Теория игр (прочее) ]
[ Построения (прочее) ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 4
Классы: 9,10,11

На плоскости проведены три прямые, образующие остроугольный неравнобедренный треугольник. Федя, у которого есть циркуль и линейка, хочет провести все высоты этого треугольника. Ваня с ластиком пытается ему помешать. За ход Федя проводит либо прямую через две отмеченные точки, либо окружность с центром в отмеченной точке, проходящую через другую отмеченную точку. После этого Федя отмечает любое количество точек (точки пересечения проведенных линий, случайные точки на проведенных линиях и случайные точки плоскости). Ваня за ход стирает не более трех отмеченных точек. (Федя не может использовать стертые точки в своих построениях, пока не отметит их снова). Ходят по очереди, начинает Федя. Изначально никакие точки плоскости не отмечены. Может ли Федя провести высоты?
Прислать комментарий     Решение


Страница: 1 2 3 >> [Всего задач: 15]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .