ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() Сергей Валерьевич Маркелов (1976-2024) - математик, популяризатор. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Точка M – середина стороны AC треугольника ABC. На отрезках AM и CM выбраны точки P и Q соответственно таким образом, что PQ = AC/2. Описанная окружность треугольника ABQ второй раз пересекает сторону BC в точке X, а описанная окружность треугольника BCP, второй раз пересекает сторону AB в точке Y. Докажите, что четырёхугольник BXMY – вписанный. Барон Мюнхгаузен придумал теорему: если многочлен $x^n - a x^{n-1} + bx^{n-2} + \ldots $ имеет $n$ натуральных корней, то на плоскости найдутся $a$ прямых, у которых ровно $b$ точек пересечения друг с другом. Не ошибается ли барон? Даны 1000 линейных функций: fk(x) = pkx + qk (k = 1, 2, ..., 1000). Нужно найти значение их композиции f(x) = f1(f2(f3(...f1000(x)...))) в точке x0. Докажите, что это можно сделать не более чем за 30 стадий, если на каждой стадии можно параллельно выполнять любое число арифметических операций над парами чисел, полученных на предыдущих стадиях, а на первой стадии используются числа p1, p2, ..., p1000, q1, q2, ..., q1000, x0. Дан треугольник ABC, O – центр его описанной окружности. Проекции точек D и X на стороны треугольника лежат на прямых l и L, причём Докажите, что в неравнобедренном треугольнике одна из окружностей, касающихся вписанной и описанной окружностей внутренним, а одной из вневписанных внешним образом, проходит через вершину треугольника. Найдите все такие натуральные n, что при некоторых отличных от нуля действительных числах a, b, c, d многочлен (ax + b)1000 – (cx + d)1000 после раскрытия скобок и приведения всех подобных слагаемых имеет ровно n ненулевых коэффициентов. Выпуклый четырехугольник $ABCD$ таков, что $\angle B=\angle D$. Докажите, что середина диагонали $BD$ лежит на общей внутренней касательной к окружностям, вписанным в треугольники $ABC$ и $ACD$. На рисунке можно найти 9 прямоугольников. Известно, что у каждого из них длина и ширина – целые. Дан выпуклый пятиугольник $ABCDE$, в котором AE || CD и $AB = BC$. Биссектрисы его углов $A$ и $C$ пересекаются в точке $K$. Докажите, что BK || AE. Сто сидений карусели расположены по кругу через равные промежутки. Каждое покрашено в жёлтый, синий или красный цвет. Сиденья одного и того же цвета расположены подряд и пронумерованы 1, 2, 3, ... по часовой стрелке. Синее сиденье № 7 противоположно красному № 3, а жёлтое № 7 — красному № 23. Найдите, сколько на карусели жёлтых сидений, сколько синих и сколько красных. Диагонали вписанного четырёхугольника ABCD пересекаются в точке M. Окружность ω касается отрезка MA в точке P, отрезка MD в точке Q и описанной окружности Ω четырёхугольника ABCD в точке X. Докажите, что X лежит на радикальной оси описанных окружностей ωQ и ωP треугольников ACQ и BDP. Нарисуйте многоугольник и точку на его границе так, что любая прямая, проходящая через эту точку, делит площадь этого многоугольника пополам. Точка $O$ — центр описанной окружности треугольника $ABC$. Серединный перпендикуляр к $BC$ пересекает $AB$ и $AC$ в точках $X$ и $Y$. Прямая $AO$ пересекает прямую $BC$ в точке $D$, $M$ — середина $BC$. Описанная окружность треугольника $ADM$ пересекает описанную окружность треугольника $ABC$ в точке $E$, отличной от $A$. Докажите, что прямая $OE$ касается описанной окружности треугольника $AXY$. В остроугольном треугольнике $ABC$ $A_M$ – середина стороны $BC$, $A_H$ – основание высоты, опущенной на эту сторону. Аналогично определяются точки $B_M$, $B_H$, $C_M$, $C_H$. Докажите, что одно из отношений $A_MA_H:A_HA$, $B_MB_H:B_HB$, $C_MC_H:C_HC$ равно сумме двух других. В невыпуклом шестиугольнике каждый угол равен либо 90, либо 270 градусов. Верно ли, что при некоторых длинах сторон его можно разрезать на два подобных ему и неравных между собой шестиугольника? |
Страница: << 5 6 7 8 9 10 11 [Всего задач: 55]
Можно ли, применяя к числу 2 функции sin, cos, tg, ctg, arcsin, arccos, arctg, arcctg в любом количестве и в любом порядке, получить число 2010?
Есть два платка: один в форме квадрата, другой – в форме правильного треугольника, причём их периметры одинаковы.
В невыпуклом шестиугольнике каждый угол равен либо 90, либо 270 градусов. Верно ли, что при некоторых длинах сторон его можно разрезать на два подобных ему и неравных между собой шестиугольника?
Нарисуйте многоугольник и точку на его границе так, что любая прямая, проходящая через эту точку, делит площадь этого многоугольника пополам.
Назовём полоской клетчатый многоугольник, который можно пройти целиком, начав из какой-то его клетки и далее двигаясь только в двух направлениях — вверх или вправо. Несколько таких одинаковых полосок можно вставить друг в друга, сдвигая на вектор $(-1,1)$. Докажите, что для любой полоски, состоящей из чётного числа клеток, найдётся такое нечётное $k$, что если объединить $k$ таких же полосок, вставив их последовательно друг в друга, то полученный многоугольник можно будет разделить по линиям сетки на две равные части. (На рисунке приведён пример.)
Страница: << 5 6 7 8 9 10 11 [Всего задач: 55]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке