Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Дан ромб с острым углом $ \alpha$. Какую часть площади ромба составляет площадь вписанного в него круга?

Вниз   Решение


Около окружности описана равнобедренная трапеция ABCD. Боковая сторона AB касается окружности в точке M, а основание AD – в точке N. Отрезки MN и AC пересекаются в точке P, причём  NP : PM = 2.  Найдите отношение  AD : BC.

ВверхВниз   Решение


Вершины параллелограмма A1B1C1D1 лежат на сторонах параллелограмма ABCD (точка A1 лежит на стороне AB, точка B1 – на стороне BC и т.д.).
Докажите, что центры обоих параллелограммов совпадают.

ВверхВниз   Решение


Участники тараканьих бегов бегут по окружности в одном направлении, стартовав одновременно из точки $S$. Таракан $A$ бежит вдвое медленнее, чем $B$, и втрое медленнее, чем $C$. Точки $X$, $Y$ на отрезке $SC$ таковы, что $SX=XY=YC$. Прямые $AX$ и $BY$ пересекаются в точке $Z$. Найдите ГМТ пересечения медиан треугольника $ZAB$.

ВверхВниз   Решение


В остроугольном треугольнике ABC проведены высоты BB', CC'. Через A и C' проведены две окружности, касающиеся BC в точках P и Q.
Докажите, что точки A, B', P, Q лежат на одной окружности.

ВверхВниз   Решение


Из вершины тупого угла А треугольника АВС опущена высота AD. Проведена окружность с центром D и радиусом DA, которая вторично пересекает стороны AB и AC в точках M и N соответственно. Найдите AC, если  AB = c,  AM = m  и  AN = n.

ВверхВниз   Решение


Докажите тождества:

  а)  

  б)  

  в)  

  г)  

  д)  

(Попробуйте доказать эти тождества тремя разными способами: пользуясь тем, что      – это количество k-элементных подмножеств в множестве из n элементов; исходя из того, что     – это коэффициент при xk у многочлена  (1 + x)n;  пользуясь "шахматным городом" из задачи 60395).

ВверхВниз   Решение


Дан правильный треугольник ABC с центром O. Прямая, проходящая через вершину C, пересекает описанную окружность треугольника AOB в точках D и E. Докажите, что точки A, O и середины отрезков BD, BE лежат на одной окружности.

ВверхВниз   Решение


В треугольнике ABC, где угол B прямой, а угол A меньше угла C, проведена медиана BM. На стороне AC взята точка L так, что  ∠ABM = ∠MBL.  Описанная окружность треугольника BML пересекает сторону AB в точке N. Докажите, что  AN = BL.

ВверхВниз   Решение


Геометрическая прогрессия состоит из 37 натуральных чисел. Первый и последний члены прогрессии взаимно просты.
Докажите, что 19-й член прогрессии является 18-й степенью натурального числа.

ВверхВниз   Решение


Дан клетчатый квадрат $n\times n$, где  $n$ > 1.  Кроссвордом будем называть любое непустое множество его клеток, а словом – любую горизонтальную и любую вертикальную полоску (клетчатый прямоугольник шириной в одну клетку), целиком состоящую из клеток кроссворда и не содержащуюся ни в какой большей полоске из клеток кроссворда (ни горизонтальной, ни вертикальной). Пусть $x$ – количество слов в кроссворде, $y$ – наименьшее количество слов, которыми можно покрыть кроссворд. Найдите максимум отношения $\frac{x}{y}$ при данном $n$.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 >> [Всего задач: 19]      



Задача 65270

Темы:   [ Дискретное распределение ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 8,9,10,11

В классе меньше 30 человек. Вероятность того, что наугад выбранная девочка отличница, равна 3/13, а вероятность того, что наугад выбранный мальчик – отличник, равна 4/11. Сколько в классе отличников?

Прислать комментарий     Решение

Задача 65273

Тема:   [ Дискретное распределение ]
Сложность: 3+
Классы: 9,10,11

Игральную кость бросают раз за разом. Обозначим через Pn вероятность того, что в какой-то момент сумма очков, выпавших при всех сделанных бросках, равна n. Докажите, что при  n ≥ 7  верно равенство  Pn = ⅙ (Pn–1 + Pn–2 + ... + Pn–6).

Прислать комментарий     Решение

Задача 65262

Темы:   [ Турниры и турнирные таблицы ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 9,10,11

Итоговый балл в фигурном катании выставляется следующим образом. Бригада судей состоит из десяти человек. Каждый из судей ставит спортсмену свою оценку за выступление. После этого из десяти полученных оценок случайным образом выбираются семь. Сумма этих семи оценок и есть итоговый балл. Места между спортсменами распределяются в соответствии с набранным итоговым баллом: чем выше балл, тем лучше результат. В чемпионате участвовало 6 спортсменов. Могло ли оказаться так, что:
  а) спортсмен, у которого сумма всех 10 оценок максимальна, занял последнее место?
  б) спортсмен, у которого сумма всех 10 оценок максимальна, занял последнее место, а спортсмен, у которого сумма всех 10 оценок минимальна, занял первое место?

Прислать комментарий     Решение

Задача 65263

Темы:   [ Дискретное распределение ]
[ Системы алгебраических нелинейных уравнений ]
[ Квадратичные неравенства (несколько переменных) ]
Сложность: 4-
Классы: 8,9,10,11

Можно ли:
  а) нагрузить две монеты так, чтобы вероятности выпадения "орла" и "решки" были разные, а вероятности выпадения любой из комбинаций "решка, решка", "орел, решка", "орел, орел" были бы одинаковы?
  б) нагрузить две кости так, чтобы вероятность выпадения любой суммы от 2 до 12 была одинаковой?

Прислать комментарий     Решение

Задача 65274

Тема:   [ Дискретное распределение ]
Сложность: 4-
Классы: 9,10,11

На рулетке может выпасть любое число от 0 до 2007 с одинаковой вероятностью. Рулетку крутят раз за разом. Обозначим через Pk вероятность того, что в какой-то момент сумма чисел, выпавших при всех сделанных бросках, равна k. Какое число больше: P2007 или P2008?

Прислать комментарий     Решение

Страница: << 1 2 3 4 >> [Всего задач: 19]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .