ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В драматическом театре им. Пушкина к юбилею Александра Сергеевича решили поставить оперу «Евгений Онегин». Артисты театра обладают красивыми, но не очень сильными голосами. По этой причине руководство театра дало указание приобрести радиомикрофоны. В начале и в конце спектакля все артисты находятся за кулисами. Артисты выходят на сцену и покидают ее через правую или левую кулису. Для того, чтобы петь на сцене, артист берет с собой один микрофон. Артист может выходить на сцену с микрофоном (одним), даже если ему не надо петь в этом выходе. Взяв микрофон, артист не может оставить его на сцене или передать другому артисту. При уходе артиста за кулисы микрофон остается за соответствующей кулисой до тех пор, пока его снова не возьмет какой-либо артист, выходящий на сцену.

Очередность выходов артистов на сцену и их уходов за кулисы указывается в режиссерском плане. Кроме того, в этом плане указывается, через какие кулисы выходит (или уходит) артист и поет ли он в данном выходе. 

Напишите программу, которая по заданному режиссерскому плану определяет минимальное количество требуемых для постановки оперы микрофонов, их начальное размещение по кулисам и для каждого выхода указывает, брать или не брать микрофон.

Входные данные

Первая строка входного файла содержит целое число N – количество артистов, участвующих в спектакле (1 ≤ N ≤ 1000). Во второй строке записано целое число K – количество выходов артистов на сцену (1 ≤ K ≤ 3000). Далее идут 2K строк, описывающих режиссерский план спектакля. Каждая из них содержит четверку AiBiCiDi (1 ≤ i ≤ 2K):
Ai – символ +, если в данный момент артист выходит на сцену, или символ -, если артист со сцены уходит;
Bi – номер артиста (целое число от 1 до N);
Ci – символ Л, если артист выходит (уходит) через левые кулисы, или символ П, если он выходит (уходит) через правые кулисы;
Di – символ Д, если артист поет в данном выходе (пел перед данным уходом), или символ Н, если он не поет (не пел).

Выходные данные

Первая строка выходного файла должна содержать два целых числа. Первое число – количество микрофонов перед началом оперы с левой стороны, второе число – количество микрофонов с правой стороны. В каждой из последующих K строк необходимо вывести 1 или 0 в зависимости от того, берет ли с собой микрофон очередной выходящий на сцену артист (1 - берет, 0 - не берет).

Пример входного файла

3
4
+ 1 Л Д
- 1 Л Д
+ 2 Л Н
+ 3 Л Н
- 3 П Н
+ 1 П Д
- 1 Л Д
- 2 П Н

Пример выходного файла

1 0
1
0
1
1

   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 48]      



Задача 66662  (#21 [10-11 кл])

Тема:   [ ГМТ с ненулевой площадью ]
Сложность: 5
Классы: 10,11

На плоскости даны прямая $l$ и точка $A$ вне ее. Найдите геометрическое место инцентров остроугольных треугольников с вершиной $A$, у которых одна сторона лежит на прямой $l$.
Прислать комментарий     Решение


Задача 66663  (#22 [10-11 кл])

Тема:   [ Задачи на максимум и минимум (прочее) ]
Сложность: 5+
Классы: 10,11

Автор: Белухов Н.

Шесть кругов с радиусами, равными 1, расположены на плоскости так, что расстояние между центрами любых двух из них больше $d$. При каком наименьшем $d$ можно утверждать, что найдется прямая, не пересекающая ни одного из кругов, по каждую сторону от которой лежат три круга?
Прислать комментарий     Решение


Задача 66664  (#23 [10-11 кл])

Тема:   [ Разрезания, разбиения, покрытия и замощения ]
Сложность: 5
Классы: 10,11

Плоскость разбита на выпуклые семиугольники единичного диаметра. Докажите, что любой круг радиуса 200 пересекает не менее миллиарда из них.
Прислать комментарий     Решение


Задача 66665  (#24 [10-11 кл])

Темы:   [ Четырехугольная пирамида ]
[ Перпендикулярные прямые в пространстве ]
Сложность: 4+
Классы: 10,11

Автор: Солынин А.

Кристалл пирита представляет собой параллелепипед, на каждую грань которого нанесена штриховка.

На любых двух соседних гранях штриховка перпендикулярна. Существует ли выпуклый многогранник с числом граней, не равным $6$, грани которого можно заштриховать аналогичным образом?
Прислать комментарий     Решение

Задача 66666  (#8.1)

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Вспомогательные равные треугольники ]
Сложность: 3
Классы: 8,9

В прямоугольном треугольнике $ABC$ ($\angle C=90^{\circ}$) вписанная окружность касается катета $BC$ в точке $K$. Докажите, что хорда вписанной окружности, высекаемая прямой $AK$ в два раза больше, чем расстояние от вершины $C$ до этой прямой.
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .