ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дано 25 чисел. Какие бы три из них мы ни выбрали, среди оставшихся найдётся такое четвёртое, что сумма этих четырёх чисел будет положительна. Верно ли, что сумма всех чисел положительна?

   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 176]      



Задача 56861  (#05.027)

Тема:   [ Правильный (равносторонний) треугольник ]
Сложность: 3
Классы: 8

а) Докажите, что если  a + ha = b + hb = c + hc, то треугольник ABC правильный.
б) В треугольник ABC вписаны три квадрата: у одного две вершины лежат на стороне AC, у другого — на BC, у третьего — на AB. Докажите, что если все три квадрата равны, то треугольник ABC правильный.
Прислать комментарий     Решение


Задача 56862  (#05.028)

Тема:   [ Правильный (равносторонний) треугольник ]
Сложность: 3
Классы: 8

В треугольник ABC вписана окружность, касающаяся его сторон в точках  A1, B1, C1. Докажите, что если треугольники ABC и A1B1C1 подобны, то треугольник ABC правильный.
Прислать комментарий     Решение


Задача 56863  (#05.029)

Тема:   [ Правильный (равносторонний) треугольник ]
Сложность: 4
Классы: 8

Радиус вписанной окружности треугольника равен 1, длины высот — целые числа. Докажите, что треугольник правильный.
Прислать комментарий     Решение


Задача 53391  (#05.030)

Темы:   [ Биссектриса угла (ГМТ) ]
[ Свойства биссектрис, конкуррентность ]
[ Треугольники с углами $60^\circ$ и $120^\circ$ ]
Сложность: 3+
Классы: 8,9

Один из углов треугольника равен 120°. Докажите, что треугольник, образованный основаниями биссектрис данного, прямоугольный.

Прислать комментарий     Решение

Задача 56865  (#05.031)

Тема:   [ Треугольники с углами $60^\circ$ и $120^\circ$ ]
Сложность: 3
Классы: 8,9

В треугольнике ABC с углом A, равным  120o, биссектрисы AA1, BB1 и CC1 пересекаются в точке O. Докажите, что  $ \angle$A1C1O = 30o.
Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 176]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .