Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Выразите функции sin x и cos x через комплексную экспоненту.

Вниз   Решение


В правильной четырёхугольной пирамиде SABCD с вершиной S сторона основания пирамиды равна b , а высота пирамиды равна b . Шар, вписанный в эту пирамиду, касается боковой грани SAD в точке K . Найдите площадь сечения пирамиды, проходящего через ребро AB и точку K .

ВверхВниз   Решение


Правильный n-угольник вписан в единичную окружность. Докажите, что
а) сумма квадратов длин всех сторон и всех диагоналей равна n²;
б) сумма длин всех сторон и всех диагоналей равна  n ctg π/2n;
в) произведение длин всех сторон и всех диагоналей равно  nn/2.

ВверхВниз   Решение


На плоскости дано n точек. Сколько имеется отрезков с концами в этих точках?

ВверхВниз   Решение


На отрезке  [0, 2002]  отмечены его концы и точка с координатой d, где d – взаимно простое с 1001 число. Разрешается отметить середину любого отрезка с концами в отмеченных точках, если её координата целая. Можно ли, повторив несколько раз эту операцию, отметить все целые точки на отрезке?

ВверхВниз   Решение


Точки A , B , C , D , E и F – вершины нижнего основания правильной шестиугольной призмы, точки M , N , P , Q , R и S – середины сторон верхнего основания, точки O и O1 – соответственно центры нижнего и верхнего оснований. Найдите объём общей части пирамид O1ABCDEF и OMNPQRS , если объём призмы равен V .

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 44]      



Задача 61331  (#09.081)

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Цепные (непрерывные) дроби ]
[ Индукция (прочее) ]
Сложность: 5
Классы: 10,11

Предположим, что цепные дроби   сходятся. Согласно задаче 61330, они будут сходиться к корням многочлена  x² – px + q = 0.  С другой стороны к тем же корням будут сходиться и последовательности, построенные по методу Ньютона (см. задачу 61328):   xn+1 = xn = .  Докажите, что если x0 совпадает с нулевой подходящей дробью цепной дроби α или β, то числа x1, x2, ... также будут совпадать с подходящими дробями к α или β.

Прислать комментарий     Решение

Задача 61332  (#09.082)

Темы:   [ Производная и касательная ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 10,11

Метод Ньютона (см. задачу 9.77) не всегда позволяет приблизиться к корню уравнения f (x) = 0. Для многочлена f (x) = x(x - 1)(x + 1) найдите начальное условие x0 такое, что f (x0)$ \ne$x0 и x2 = x0.

Прислать комментарий     Решение

Задача 61333  (#09.083)

 [Метод Лобачевского]
Темы:   [ Многочлены (прочее) ]
[ Итерации ]
[ Теорема Виета ]
Сложность: 4-
Классы: 10,11

Пусть многочлен  P(x) = xn + an–1xn–1 + ... + a1x + a0  имеет корни  x1, x2, ..., xn,  причем  |x1| > |x2| > ... > |xn|.  В задаче  60965 был предъявлен способ построения многочлена Q(x) степени n, корнями которого являются числа     На основе этого рассуждения Лобачевский придумал метод для приближенного поиска корней многочлена P(x). Он заключается в следующем. Строится такая последовательность многочленов  P0(x), P1(x), P2(x), ...,  что  P0(x) = P(x)  и многочлен Pk(x) имеет корни     Пусть     Докажите, что

  а)  

  б)  

Прислать комментарий     Решение

Задача 61334  (#09.084)

 [Метод Лобачевского и числа Люка]
Темы:   [ Многочлены (прочее) ]
[ Итерации ]
[ Числа Фибоначчи ]
Сложность: 4
Классы: 10,11

Постройте последовательность полиномов, которая получается, если метод Лобачевского (см. задачу 61333) применить для приближенного нахождения корней многочлена  x² – x – 1.  Какие последовательности будут сходиться к корням x1 и x2, если  |x1| > |x2|?

Прислать комментарий     Решение

Задача 61335  (#09.085)

 [Метод Архимеда]
Темы:   [ Окружности (прочее) ]
[ Вписанные и описанные многоугольники ]
[ Правильные многоугольники ]
[ Вспомогательные подобные треугольники ]
[ Применение тригонометрических формул (геометрия) ]
[ Тождественные преобразования (тригонометрия) ]
Сложность: 3
Классы: 9,10,11

Рассмотрим окружность радиуса 1. Опишем около нее и впишем в нее правильные n-угольники. Обозначим их периметры через Pn (для описанного) и pn (для вписанного).
   а) Найдите P4, p4, P6 и p6.
   б) Докажите, что справедливы следующие рекуррентные соотношения:    P2n = ,        p2n =         (n ≥ 3).
   в) Найдите P96 и p96. Докажите неравенства   310/71 < π < 31/7.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 44]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .