Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Старинный замок был обнесён треугольной стеной. Каждая сторона стены была поделена на три равные части, и в этих точках, а также в вершинах были построены башни. Всего вдоль стены было 9 башен: A, E, F, B, K, L, C, M, N. Со временем все стены и башни, кроме башен E, K, M, разрушились. Как по оставшимся башням определить, где находились башни A, B, C, если известно, что башни A, B, C стояли в вершинах?

Вниз   Решение


Середины E и F параллельных сторон BC и AD параллелограмма ABCD соединены с вершинами D и B соответственно.
Докажите, что прямые BF и ED делят диагональ AC на три равные части.

ВверхВниз   Решение


Однажды осенью Рассеянный Учёный глянул на свои старинные настенные часы и увидел, что на циферблате уснули три мухи. Первая спала в точности на отметке 12 часов, а две другие так же аккуратно расположились на отметках 2 часа и 5 часов. Учёный произвёл измерения и определил, что часовая стрелка мухам не грозит, а вот минутная сметёт их всех по очереди. Найдите вероятность того, что ровно через 40 минут после того, как Учёный заметил мух, ровно две мухи из трёх были сметены минутной стрелкой.

ВверхВниз   Решение


Дан прямоугольный треугольник ABC с прямым углом при вершине C. ∠A = α,  биссектриса угла B пересекает катет AC в точке K. На стороне BC как на диаметре построена окружность, которая пересекает гипотенузу AB в точке M. Найдите угол AMK.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 73766  (#М231)

Темы:   [ Уравнения в целых числах ]
[ Принцип крайнего (прочее) ]
Сложность: 3+
Классы: 8,9,10

Автор: Егорян Р.

Решите в натуральных числах уравнение  nx + ny = nz.

Прислать комментарий     Решение

Задача 73767  (#М232)

Темы:   [ Системы точек ]
[ Неравенства с углами ]
[ Метод ГМТ ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 7,8,9

а) К любому конечному множеству точек плоскости, обладающему тем свойством, что любые три точки из этого множества являются вершинами невырожденного тупоугольного треугольника, всегда можно добавить ещё одну точку так, что это свойство сохранится. Докажите это.

б) Справедливо ли аналогичное утверждение для бесконечного множества точек плоскости?
Прислать комментарий     Решение


Задача 79261  (#М233)

Темы:   [ НОД и НОК. Взаимная простота ]
[ Последовательности (прочее) ]
[ Числовые таблицы и их свойства ]
[ Индукция (прочее) ]
[ Алгоритм Евклида ]
Сложность: 4
Классы: 9,10,11

В концах отрезка пишутся две единицы. Посередине между ними пишется их сумма – число 2. Затем посередине между каждыми двумя соседними из написанных чисел снова пишется их сумма и так далее 1973 раза. Сколько раз будет написано число 1973?

Прислать комментарий     Решение

Задача 73769  (#М234)

Темы:   [ Разные задачи на разрезания ]
[ Перегруппировка площадей ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Вычисление площадей ]
[ Предел последовательности, сходимость ]
Сложность: 6-
Классы: 8,9,10

Дан квадрат со стороной 1. От него отсекают четыре уголка — четыре треугольника, у каждого из которых две стороны идут по сторонам квадрата и составляют 1/3 их длины. С полученным 8-угольником делают то же самое: от каждой вершины отрезают треугольник, две стороны которого составляют по 1/3 соответствующих сторон 8-угольника, и так далее. Получается последовательность многоугольников (каждый содержится в предыдущем). Найдите площадь фигуры, являющейся пересечением всех этих многоугольников (то есть образованной точками, принадлежащими всем многоугольникам).
Прислать комментарий     Решение


Задача 79267  (#М235)

Темы:   [ Поворот помогает решить задачу ]
[ Связь величины угла с длиной дуги и хорды ]
[ Ломаные ]
[ Неравенство треугольника (прочее) ]
Сложность: 5-
Классы: 9,10,11

На арене круглого цирка радиуса 10 метров бегает лев. Двигаясь по ломаной линии, он пробежал 30 километров.
Доказать, что сумма всех углов, на которые лев поворачивал, не меньше 2998 радиан.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .