ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Плоскость разбита на части несколькими прямыми, среди которых есть непараллельные. Те части, граница которых состоит из двух лучей, закрасили. После этого проведена ещё одна прямая. Докажите, что, независимо от положения новой прямой, по обе стороны от неё найдутся закрашенные точки.

Пример расположения прямых (без последней прямой) изображен на рисунке.

   Решение

Задачи

Страница: << 1 2 3 4 5 [Всего задач: 24]      



Задача 109711  (#00.5.11.5)

Темы:   [ Тригонометрические неравенства ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 4
Классы: 10,11

Автор: Храбров А.

Докажите неравенство   sinn2x + (sinnx – cosnx)² ≤ 1.

Прислать комментарий     Решение

Задача 109712  (#00.5.11.6)

Темы:   [ Количество и сумма делителей числа ]
[ Разбиения на пары и группы; биекции ]
[ Делимость чисел. Общие свойства ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 7,8,9,10

Автор: Храбров А.

Совершенное число, большее 28, делится на 7. Докажите, что оно делится на 49.

Прислать комментарий     Решение

Задача 108149  (#00.5.11.7)

Темы:   [ Гомотетия помогает решить задачу ]
[ Описанные четырехугольники ]
[ Угол между касательной и хордой ]
[ Три точки, лежащие на одной прямой ]
[ Четыре точки, лежащие на одной окружности ]
[ Средняя линия трапеции ]
Сложность: 5-
Классы: 9,10,11

Четырёхугольник ABCD описан около окружности ω. Продолжения сторон AB и CD пересекаются в точке O. Окружность ω1 касается стороны BC в точке K и продолжений сторон AB и CD; окружность ω2 касается стороны AD в точке L и продолжений сторон AB и CD. Известно, что точки O, K и L лежат на одной прямой. Докажите, что середины сторон BC, AD и центр окружности ω лежат на одной прямой.

Прислать комментарий     Решение

Задача 109714  (#00.5.11.8)

Темы:   [ Числовые таблицы и их свойства ]
[ Раскраски ]
[ Правило произведения ]
[ Принцип Дирихле (прочее) ]
[ Сочетания и размещения ]
[ Доказательство от противного ]
Сложность: 5
Классы: 8,9,10,11

Клетки таблицы 100×100 окрашены в 4 цвета так, что в каждой строке и в каждом столбце ровно по 25 клеток каждого цвета.
Докажите, что найдутся две строки и два столбца, все четыре клетки на пересечении которых окрашены в разные цвета.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .