|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Выпуклый n-угольник разрезан на треугольники непересекающимися диагоналями. Рассмотрим преобразование такого разбиения, при котором треугольники ABC и ACD заменяются на треугольники ABD и BCD. Пусть P(n) — наименьшее число преобразований, за которое любое разбиение можно перевести в любое другое. Докажите, что: а) P(n) В пятиугольнике A1A2A3A4A5 проведены биссектрисы l1, l2, ..., l5 углов A1, A2, ..., A5 соответственно. Биссектрисы l1 и l2 пересекаются в точке B1, l2 и l3 – в точке B2 и т.д., ..., l5 и l1 пересекаются в точке B5. Может ли пятиугольник B1B2B3B4B5 оказаться выпуклым? |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 45]
При каком положительном значении p уравнения 3x² – 4px + 9 = 0 и x² – 2px + 5 = 0 имеют общий корень?
Найдите такие многочлены P(x) и Q(x), что (x + 1)P(x) + (x4 + 1)Q(x) = 1.
При помощи метода неопределенных коэффициентов найдите такие линейные функции P(x) и Q(x), чтобы выполнялось равенство
Найдите такие линейные функции P(x) и Q(x), чтобы выполнялось равенство P(x)(2x³ – 7x² + 7x – 2) + Q(x)(2x³ + x² + x – 1) = 2x – 1.
Сколько представлений допускает дробь
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 45] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|