Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Докажите, что в любом выпуклом многоугольнике имеется не более 35 углов, меньших 170o .

Вниз   Решение


Точки X' и Y' – образы точек X и Y при инверсии относительно окружности с центром O радиуса R, причём точки X и Y отличны от O.
Докажите, что  X'Y' = XY· .

ВверхВниз   Решение


Волк с тремя поросятами написал детектив "Три поросёнка-2", а потом вместе с Красной Шапочкой и её бабушкой кулинарную книгу "Красная Шапочка-2". В издательстве выдали гонорар за обе книжки поросёнку Наф-Нафу. Он забрал свою долю и передал оставшиеся 2100 золотых монет Волку. Гонорар за каждую книгу делится поровну между её авторами. Сколько денег Волк должен взять себе?

ВверхВниз   Решение


В правильной треугольной пирамиде SABC ( S – вершина) точки K и L являются серединами рёбер AB и AC соответственно. Через точку L проведена плоскость β , пересекающая рёбра BC и SC и удалённая от точек K и C на одинаковое расстояние, равное . Найдите длины отрезков, на которые плоскость β делит ребро SC , если AB= , SB= .

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 109997  (#99.4.11.1)

Темы:   [ Непрерывные функции (общие свойства) ]
[ Характеристические свойства и рекуррентные соотношения ]
Сложность: 4-
Классы: 10,11

О функции f(x) , заданной на всей действительной прямой, известно, что при любом a>1 функция f(x)+f(ax) непрерывна на всей прямой. Докажите, что f(x) также непрерывна на всей прямой.
Прислать комментарий     Решение


Задача 110011  (#99.4.11.2)

Темы:   [ Неравенства. Метод интервалов ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4-
Классы: 8,9,10

Произведение положительных чисел x, y и z равно 1.
Докажите, что если  1/x + 1/y + 1/z ≥ x + y + z,  то для любого натурального k выполнено неравенство  x–k + y–k + z–k ≥ xk + yk + zk.

Прислать комментарий     Решение

Задача 109998  (#99.4.11.3)

Темы:   [ Индукция (прочее) ]
[ Математическая логика (прочее) ]
[ Объединение, пересечение и разность множеств ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4
Классы: 7,8,9,10,11

В классе каждый болтун дружит хотя бы с одним молчуном. При этом болтун молчит, если в кабинете находится нечетное число его друзей – молчунов. Докажите, что учитель может пригласить на факультатив не менее половины класса так, чтобы все болтуны молчали.
Прислать комментарий     Решение


Задача 109999  (#99.4.11.4)

Темы:   [ Описанные многогранники ]
[ Ортогональная проекция (прочее) ]
[ Векторы помогают решить задачу ]
[ Скалярное произведение ]
[ Площадь сферы и ее частей ]
Сложность: 5
Классы: 10,11

Многогранник описан около сферы. Назовем его грань большой, если проекция сферы на плоскость грани целиком попадает в грань. Докажите, что больших граней не больше 6.
Прислать комментарий     Решение


Задача 110000  (#99.4.11.5)

Темы:   [ Неравенства с модулями ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 7,8,9,10

Существуют ли действительные числа a , b и c такие, что при всех действительных x и y выполняется неравенство

|x+a|+|x+y+b|+|y+c|>|x|+|x+y|+|y|?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .