ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Даны четыре палочки. Оказалось, что из любых трёх из них можно сложить треугольник, при этом площади всех четырех треугольников равны. Обязательно ли все палочки одинаковой длины?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]      



Задача 109538  (#93.4.10.3)

Тема:   [ Системы алгебраических нелинейных уравнений ]
Сложность: 4-
Классы: 8,9,10

Автор: Перлин А.

Решите в положительных числах систему уравнений

   

Прислать комментарий     Решение

Задача 109539  (#93.4.10.4)

Темы:   [ Объединение, пересечение и разность множеств ]
[ Разбиения на пары и группы; биекции ]
[ Подсчет двумя способами ]
[ Необычные конструкции ]
Сложность: 5
Классы: 9,10,11

Автор: Перлин А.

У каждого из жителей города N знакомые составляют не менее 30 населения города. Житель идет на выборы, если баллотируется хотя бы один из его знакомых. Докажите, что можно так провести выборы мэра города N из двух кандидатов, что в них примет участие не менее половины жителей.
Прислать комментарий     Решение


Задача 109547  (#93.4.10.5)

Темы:   [ Уравнения в целых числах ]
[ Деление с остатком ]
[ Арифметика остатков (прочее) ]
[ Тождественные преобразования ]
Сложность: 4-
Классы: 8,9,10

Автор: Калинин А.

Докажите, что уравнение  x³ + y³ = 4(x²y + xy² + 1)  не имеет решений в целых числах.

Прислать комментарий     Решение

Задача 109540  (#93.4.10.6)

Темы:   [ Иррациональные неравенства ]
[ Индукция (прочее) ]
[ Классические неравенства (прочее) ]
Сложность: 4
Классы: 8,9,10

Докажите, что  

Прислать комментарий     Решение

Задача 108232  (#93.4.10.7)

Темы:   [ Перегруппировка площадей ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Признаки и свойства параллелограмма ]
[ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4
Классы: 8,9

Автор: Сонкин М.

На сторонах BC и CD параллелограмма ABCD взяты точки M и N соответственно. Диагональ BD пересекает стороны AM и AN треугольника AMN соответственно в точках E и F , разбивая его на две части. Докажите, что эти две части имеют одинаковые площади тогда и только тогда, когда точка K , определяемая условиями EK || AD , FK || AB , лежит на отрезке MN .
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .