|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Параграфы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи На сторонах $AB$, $BC$, $CA$ треугольника $ABC$ выбраны точки $P$, $Q$, $R$ соответственно так, что $AP=PR$, $CQ=QR$. Точка $H$ – ортоцентр треугольника $PQR$, точка $O$ – центр описанной окружности треугольника $ABC$. Докажите, что $OH \parallel AC$. |
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 141]
Один из корней уравнения x³ – 6x² + ax – 6 = 0 равен 3. Решите уравнение.
При каких значениях параметра a многочлен P(x) = xn + axn–2 (n ≥ 2) делится на x – 2 ?
При каких p и q двучлен x4 + 1 делится на x² + px + q?
При каких a многочлен P(x) = a³x5 + (1 – a)x4 + (1 + a³)x² + (1 – 3a)x – a³ делится на x – 1?
Найти все многочлены P(x), для которых справедливо тождество: xP(x – 1) ≡ (x – 26)P(x).
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 141] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|