ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Автор: Белухов Н.

Даны два единичных куба с общим центром. Всегда ли можно занумеровать вершины каждого из кубов от $1$ до $8$ так, чтобы расстояние между любыми двумя вершинами с одинаковыми номерами не превышало $\frac{4}{5}$? А чтобы не превышало $\frac{13}{16}$?

Вниз   Решение


Куб размером 10×10×10 сложен из 500 чёрных и 500 белых кубиков в шахматном порядке (кубики, примыкающие друг к другу гранями, имеют различные цвета). Из этого куба вынули 100 кубиков так, чтобы в каждом из 300 рядов размером 1×1×10, параллельных какому-нибудь ребру куба, не хватало ровно одного кубика. Докажите, что число вынутых чёрных кубиков делится на 4.

Вверх   Решение

Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 100]      



Задача 57494  (#10.082)

Тема:   [ Неравенства для остроугольных треугольников ]
Сложность: 4+
Классы: 8

Докажите, что треугольник остроугольный тогда и только тогда, когда p > 2R + r.
Прислать комментарий     Решение


Задача 57495  (#10.083)

Тема:   [ Неравенства для остроугольных треугольников ]
Сложность: 4+
Классы: 8

Докажите, что треугольник ABC остроугольный тогда и только тогда, когда на его сторонах BC, CA и AB можно выбрать такие внутренние точки A1, B1 и C1, что  AA1 = BB1 = CC1.
Прислать комментарий     Решение


Задача 57496  (#10.084)

Тема:   [ Неравенства для остроугольных треугольников ]
Сложность: 5
Классы: 8

Докажите, что треугольник ABC остроугольный тогда и только тогда, когда длины его проекций на три различных направления равны.
Прислать комментарий     Решение


Задача 57497  (#10.085)

Тема:   [ Неравенства для элементов треугольника (прочее) ]
Сложность: 2+
Классы: 9

Через точку O пересечения медиан треугольника ABC проведена прямая, пересекающая его стороны в точках M и N. Докажите, что  NO $ \leq$ 2MO.
Прислать комментарий     Решение


Задача 57498  (#10.086)

Тема:   [ Неравенства для элементов треугольника (прочее) ]
Сложность: 2+
Классы: 9

Докажите, что если треугольник ABC лежит внутри треугольника A'B'C', то  rABC < rA'B'C'.
Прислать комментарий     Решение


Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 100]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .