Страница: 1
2 3 4 5 6 7 >> [Всего задач: 48]
Задача
66769
(#1 [8 кл])
|
|
Сложность: 3 Классы: 8,9,10,11
|
В треугольнике $ABC$ $AA_1$, $CC_1$ – высоты, $P$ – произвольная точка на стороне $BC$. Точка $Q$ на прямой $AB$ такова, что $QP=PC_1$, а точка $R$ на прямой $AC$ такова, что $RP=CP$. Докажите, что четырехугольник $QA_1RA$ вписанный.
Задача
66770
(#2 [8 кл])
|
|
Сложность: 3 Классы: 8,9,10,11
|
Окружность $\omega_{1}$ проходит через центр $O$ окружности $\omega_{2}$ и пересекает ее в точках $A$ и $B$.
Окружность $\omega_{3}$ с центром в точке $A$ и радиусом $AB$ пересекает повторно окружности $\omega_{1}$ и $\omega_{2}$ в
точках $C$ и $D$ (отличных от $B$). Докажите, что точки $C$, $O$, $D$ лежат на одной прямой.
Задача
66771
(#3 [8 кл])
|
|
Сложность: 3 Классы: 8,9,10,11
|
Внутри окружности расположен прямоугольник $ABCD$. Лучи $BA$ и $DA$ пересекают окружность в точках $A_1$ и $A_2$. Точка $A_0$ – середина хорды $A_1A_2$. Аналогично определяются точки $B_0$, $C_0$, $D_0$. Докажите, что отрезки $A_0C_0$ и $B_0D_0$ равны.
Задача
66772
(#4 [8 кл])
|
|
Сложность: 3 Классы: 8,9,10,11
|
В треугольнике $ABC$ вневписанная окружность, лежащая напротив угла $C$, касается стороны $AB$ в точке $T$. Пусть $J$ – центр вневписанной окружности, лежащей напротив угла $A$, a $M$ – середина $AJ$. Докажите, что $MT=MC$.
Задача
66773
(#5 [8-9 кл])
|
|
Сложность: 3 Классы: 8,9,10,11
|
На плоскости даны точки $A$, $B$, $C$ и $D$ общего положения и проходящая через $B$ и $C$ окружность $\omega$. Точка $P$ движется по $\omega$. Обозначим через $Q$ точку пересечения описанных окружностей треугольников $ABP$ и $PCD$, отличную от $P$. Найдите геометрическое место точек $Q$.
Страница: 1
2 3 4 5 6 7 >> [Всего задач: 48]