Страница: 1
2 >> [Всего задач: 8]
|
|
Сложность: 3 Классы: 9,10,11
|
В треугольнике $ABC$ $(\angle C=90^{\circ})$, $CH$ – высота; $HA_{1}, HB_{1}$ – биссектрисы углов $\angle CHB, \angle AHC$ соответственно; $E, F$ – середины отрезков $HB_{1}$ и $HA_{1}$ соответственно. Докажите, что прямые $AE$ и $BF$ пересекаются на биссектрисе угла $ACB$.
|
|
Сложность: 3+ Классы: 9,10,11
|
Продолжения боковых сторон $AB$ и $CD$ трапеции $ABCD$ пересекаются в точке $S$. Точки $X$, $Y$ на биссектрисе угла $S$ таковы, что $\angle AXC-\angle AYC=\angle ASC$. Докажите, что $\angle BXD-\angle BYD=\angle BSD$.
|
|
Сложность: 4 Классы: 9,10,11
|
В неравнобедренном треугольнике $ABC$ точки $A_0$, $B_0$, $C_0$ – середины сторон $BC$, $CA$, $AB$ соответственно. Биссектриса угла $C$ пересекает прямые $A_0C_0$ и $B_0C_0$ в точках $B_1$ и $A_1$. Докажите, что прямые $AB_1$, $BA_1$ и $A_0B_0$ пересекаются в одной точке.
|
|
Сложность: 4 Классы: 9,10,11
|
Биссектриса угла $A$ треугольника $ABC$ ($AB>AC$) пересекает описанную окружность в точке $P$. Перпендикуляр к $AC$ в точке $C$ пересекает биссектрису угла $A$ в точке $K$. Окружность с центром в точке $P$ и радиусом $PK$ пересекает меньшую дугу $PA$ описанной окружности в точке $D$. Докажите, что в четырехугольник $ABDC$ можно вписать окружность.
|
|
Сложность: 4 Классы: 10,11
|
Может ли треугольник быть разверткой четырехугольной пирамиды?
Страница: 1
2 >> [Всего задач: 8]