ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Решите уравнение |x-2|+|x-1|+|x|+|x+1|+|x+2|=6.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 26]      



Задача 67321

Темы:   [ Графики и ГМТ на координатной плоскости ]
[ Функции. Непрерывность (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Существует ли на координатной плоскости точка, относительно которой симметричен график функции $f(x)=\frac{1}{2^x+1}$?
Прислать комментарий     Решение


Задача 67315

Темы:   [ Взвешивания ]
[ Показательные функции и логарифмы (прочее) ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Оценка + пример ]
Сложность: 3
Классы: 9,10,11

У математика есть 19 различных гирь, массы которых в килограммах равны $\ln 2$, $\ln 3$, $\ln 4, \ldots, \ln 20$, и абсолютно точные двухчашечные весы. Он положил несколько гирь на весы так, что установилось равновесие. Какое наибольшее число гирь могло оказаться на весах?
Прислать комментарий     Решение


Задача 67323

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Автор: Фольклор

Докажите, что если при $n\in\mathbb{N}$ число $2+2\sqrt{12n^2+1}$ целое, то оно  – точный квадрат.
Прислать комментарий     Решение


Задача 67316

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Вспомогательные подобные треугольники ]
[ Перенос помогает решить задачу ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 3+
Классы: 8,9,10,11

В остроугольном треугольнике $ABC$ проведена высота $AH$. Точки $M$ и $N$  – середины отрезков $BH$ и $CH$. Докажите, что точка пересечения перпендикуляров, опущенных из точек $M$ и $N$ на прямые $AB$ и $AC$ соответственно, равноудалена от точек $B$ и $C$.
Прислать комментарий     Решение


Задача 67322

Тема:   [ Турниры и турнирные таблицы ]
Сложность: 3+
Классы: 8,9,10,11

Чемпионат по футболу проходил в два круга. В каждом круге каждая команда сыграла с каждой один матч (за победу даётся три очка, за ничью одно, за поражение ноль). Оказалось, что все команды вместе набрали в первом круге 60 от общей суммы всех очков за два круга. Известно также, что победитель чемпионата набрал во втором круге в 30 раз меньше очков, чем все команды вместе в первом круге. Сколько команд участвовало в турнире?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 >> [Всего задач: 26]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .