Страница: 1
2 >> [Всего задач: 6]
|
|
Сложность: 3 Классы: 9,10,11
|
У математика есть 19 различных гирь, массы которых в килограммах равны $\ln 2$, $\ln 3$, $\ln 4, \ldots, \ln 20$, и абсолютно точные двухчашечные весы. Он положил несколько гирь на весы так, что установилось равновесие. Какое наибольшее число гирь могло оказаться на весах?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
В остроугольном треугольнике $ABC$ проведена высота $AH$. Точки $M$ и $N$ – середины отрезков $BH$ и $CH$. Докажите, что точка пересечения перпендикуляров, опущенных из точек $M$ и $N$ на прямые $AB$ и $AC$ соответственно, равноудалена от точек $B$ и $C$.
|
|
Сложность: 3+ Классы: 7,8,9,10,11
|
Имеется кучка из 100 камней. Двое играют в следующую игру. Первый
игрок забирает 1 камень, потом второй может забрать 1 или 2 камня, потом первый
может забрать 1, 2 или 3 камня, затем второй 1, 2, 3 или 4 камня, и так далее. Выигрывает тот, кто забирает последний камень. Кто может выиграть, как бы ни играл
соперник?
|
|
Сложность: 4+ Классы: 8,9,10,11
|
Дан многочлен степени $n \geqslant 1$ с целыми ненулевыми коэффициентами, каждый из которых является его корнем. Докажите, что модули коэффициентов этого многочлена не превосходят 2.
|
|
Сложность: 5- Классы: 10,11
|
В тетраэдре $ABCD$ скрещивающиеся рёбра попарно
равны. Через середину отрезка $AH_A$, где $H_A$ – точка пересечения
высот грани $BCD$, провели прямую $h_A$ перпендикулярно плоскости
$BCD$. Аналогичным образом определили точки $H_B$, $H_C$, $H_D$ и
построили прямые $h_B$, $h_C$, $h_D$ соответственно для трёх других
граней тетраэдра. Докажите, что прямые $h_A$, $h_B$, $h_C$, $h_D$
пересекаются в одной точке.
Страница: 1
2 >> [Всего задач: 6]