|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Туры:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи При каких значениях x и y верно равенство x² + (1 – y)² + (x – y)² = ⅓? Султан собрал 300 придворных мудрецов и предложил им испытание. Имеются колпаки 25 различных цветов, заранее известных мудрецам. Султан сообщил, что на каждого из мудрецов наденут один из этих колпаков, причём если для каждого цвета написать количество надетых колпаков, то все числа будут различны. Каждый мудрец будет видеть колпаки остальных мудрецов, а свой колпак нет. Затем все мудрецы одновременно огласят предполагаемый цвет своего колпака. Могут ли мудрецы заранее договориться действовать так, чтобы гарантированно хотя бы 150 из них назвали цвет верно? Доказать, что если расстояния между скрещивающимися рёбрами тетраэдра равны h1, h2, h3, то объём тетраэдра не меньше, чем h1h2h3/3. |
Страница: << 2 3 4 5 6 7 8 [Всего задач: 39]
Из центра окружности выходят N векторов, концы которых делят её на N равных дуг. Некоторые векторы синие, остальные – красные. Подсчитаем сумму углов "красный вектор – синий вектор" (каждый угол вычисляется от красного вектора к синему против часовой стрелки) и разделим её на общее число всех таких углов. Докажите, что полученная величина "среднего угла" равна 180°.
а) Докажите, что если в 3n клетках таблицы 2n×2n расставлены 3n звёздочек, то можно вычеркнуть n столбцов и n строк так, что все звёздочки будут вычеркнуты.
Существует ли такое натуральное число M, что никакое натуральное число, десятичная запись которого состоит лишь из нулей и не более чем 1988 единиц, не делится на M?
Дан 101 прямоугольник с целыми сторонами, не превышающими 100.
Страница: << 2 3 4 5 6 7 8 [Всего задач: 39] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|