Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

На бумажке записаны три положительных числа x, y и 1. За один ход разрешается записать на бумажку сумму или разность каких-нибудь двух уже записанных чисел или записать число, обратное к какому-нибудь из уже записанных чисел. Можно ли за несколько ходов получить на бумажке
 a) число x²?   б) число xy?

Вниз   Решение


Одной операцией к числу можно либо прибавить 9, либо стереть в нём в любом месте цифру 1.
Из любого ли натурального числа A при помощи таких операций можно получить число A + 1?
(Если стирается единица в самом начале числа, а за ней сразу идут нули, то эти нули тоже стираются.)

ВверхВниз   Решение


Пусть вершины B и C треугольника фиксированы, а вершина A движется так, что угол Брокара $ \varphi$ треугольника ABC остается постоянным. Тогда точка A движется по окружности радиуса (a/2)$ \sqrt{{\rm ctg}^2\varphi -3}$, где a = BC (окружность Нейберга).

ВверхВниз   Решение


Автор: Жуков Г.

На плоскости даны шесть точек. Известно, что их можно разбить на две тройки так, что получатся два треугольника. Всегда ли можно разбить эти точки на две тройки так, чтобы получились два треугольника, которые не имеют друг с другом никаких общих точек (ни внутри, ни на границе)?

ВверхВниз   Решение


Автор: Жуков Г.

Пусть C(n) – количество различных простых делителей числа n. (Например,  C(10) = 2,  C(11) = 1,  C(12) = 2.)
Конечно или бесконечно число таких пар натуральных чисел  (a, b),  что  a ≠ b  и  C(a + b) = C(a) + C(b)?

ВверхВниз   Решение


Про группу из пяти человек известно, что:

   Алеша на 1 год старше Алексеева,
   Боря на 2 года старше Борисова,
   Вася на 3 года старше Васильева,
   Гриша на 4 года старше Григорьева,
   а еще в этой группе есть Дима и Дмитриев.

Кто старше и на сколько: Дима или Дмитриев?

ВверхВниз   Решение


Докажите, что у четырёхугольника, описанного около окружности, суммы противоположных сторон равны.

ВверхВниз   Решение


Точки M и N – середины противоположных сторон BC и AD выпуклого четырёхугольника ABCD. Диагональ AC проходит через середину отрезка MN. Докажите, что треугольники ABC и ACD равновелики.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 36]      



Задача 97940

Темы:   [ Десятичная система счисления ]
[ Деление с остатком ]
[ Формулы сокращенного умножения (прочее) ]
Сложность: 3-
Классы: 7,8,9

Автор: Плачко В.

Докажите, что предпоследняя цифра любой степени числа 3 чётна.

Прислать комментарий     Решение

Задача 97954

Темы:   [ Средние величины ]
[ Системы линейных уравнений ]
[ Текстовые задачи (прочее) ]
Сложность: 3-
Классы: 7,8,9

Автор: Фомин С.В.

Коля и Вася за январь получили по 20 оценок, причём Коля получил пятерок столько же, сколько Вася четвёрок, четвёрок столько же, сколько Вася троек, троек столько же, сколько Вася двоек, и двоек столько же, сколько Вася – пятёрок. При этом средний балл за январь у них одинаковый. Сколько двоек за январь получил Коля?

Прислать комментарий     Решение

Задача 97956

Темы:   [ Симметричная стратегия ]
[ Правильные многоугольники ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 3-
Классы: 7,8,9

Автор: Иванов В.

  а) Вершины правильного 10-угольника закрашены чёрной и белой краской через одну. Двое играют в следующую игру. Каждый по очереди проводит отрезок, соединяющий вершины одинакового цвета. Эти отрезки не должны иметь общих точек (даже концов) с проведенными ранее. Побеждает тот, кто сделал последний ход. Кто выигрывает при правильной игре: начинающий игру или его партнер?
  б) Тот же вопрос для 12-угольника.

Прислать комментарий     Решение

Задача 108028

Темы:   [ Перегруппировка площадей ]
[ Медиана делит площадь пополам ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 3-
Классы: 8,9

Точки M и N – середины противоположных сторон BC и AD выпуклого четырёхугольника ABCD. Диагональ AC проходит через середину отрезка MN. Докажите, что треугольники ABC и ACD равновелики.

Прислать комментарий     Решение

Задача 97944

Темы:   [ Алгебраические неравенства (прочее) ]
[ Тождественные преобразования ]
[ Разложение на множители ]
[ Формулы сокращенного умножения (прочее) ]
[ Неравенство Коши ]
Сложность: 3
Классы: 8,9

Даны три неотрицательных числа a, b, c. Про них известно, что   a4 + b4 + c4 ≤ 2(a²b² + b²c² + c²a²).
  а) Докажите, что каждое из них не больше суммы двух других.
  б) Докажите, что   a² + b² + c² ≤ 2(ab + bc + ca).
  в) Следует ли из неравенства пункта б) исходное неравенство?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 36]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .