Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 16 задач
Версия для печати
Убрать все задачи

Две окружности пересекаются в точках A и B. В точке A к обеим проведены касательные, пересекающие окружности в точках M и N. Прямые BM и BN пересекают окружности еще раз в точках P и Q (P – на прямой BM, Q – на прямой BN). Докажите, что отрезки MP и NQ равны.

Вниз   Решение


Рассматривается шестиугольник, который является пересечением двух (не обязательно равных) правильных треугольников.
Докажите, что если параллельно перенести один из треугольников, то периметр пересечения (если оно остаётся шестиугольником), не меняется.

ВверхВниз   Решение


Найдите геометрическом место ортоцентров (точек пересечения высот) всевозможных треугольников, вписанных в данную окружность.

ВверхВниз   Решение


Автор: Шноль Д.Э.

Вася называет прямоугольник, стороны которого отличаются на 1, почти-квадратом. (Например, прямоугольник со сторонами 5 и 6 – это почти-квадрат.) Существует ли почти-квадрат, который можно разрезать на 2010 почти-квадратов?

ВверхВниз   Решение


Автор: Храмцов Д.

При каком наибольшем n можно раскрасить числа 1, 2, ..., 14 в красный и синий цвета так, чтобы для каждого числа  k = 1, 2, ..., n  нашлись пара синих чисел, разность между которыми равна k, и пара красных чисел, разность между которыми тоже равна k?

ВверхВниз   Решение


Существует ли прямоугольный треугольник, у которого длины двух сторон – целые числа, а длина третьей стороны равна   ?

ВверхВниз   Решение


В остроугольном треугольнике соединены основания высот. Оказалось, что в полученном треугольнике две стороны параллельны сторонам исходного треугольника. Докажите, что третья сторона также параллельна одной из сторон исходного треугольника.

ВверхВниз   Решение


В треугольнике одна сторона в три раза меньше суммы двух других. Докажите, что против этой стороны лежит наименьший угол треугольника.

ВверхВниз   Решение


В выпуклом шестиугольнике AC1BA1CB1   AB1 = AC1BC1 = BA1CA1 = CB1  и  ∠A + ∠B + ∠C = ∠A1 + ∠B1 + ∠C1.
Докажите, что площадь треугольника ABC равна половине площади шестиугольника.

ВверхВниз   Решение


а) На плоскости даны n векторов, длина каждого из которых равна 1. Сумма всех n векторов равна нулевому вектору. Докажите, что векторы можно занумеровать так, чтобы при всех k = 1, 2, ..., n выполнялось следующее условие: длина суммы первых k векторов не превышает 3.

б) Докажите аналогичное утверждение для n векторов с суммой 0, длина каждого из которых не превосходит 1.

в) Можно ли заменить число 3 в пункте а) меньшим? Постарайтесь улучшить оценку и в пункте б).

ВверхВниз   Решение


Дана трапеция ABCD, M – точка пересечения её диагоналей. Известно, что боковая сторона AB перпендикулярна основаниям AD и BC и что в трапецию можно вписать окружность. Найдите площадь треугольника DCM, если радиус этой окружности равен r.

ВверхВниз   Решение


Три прямолинейных коридора одинаковой длины l образуют фигуру, изображённую на рисунке. По ним бегают гангстер и полицейский. Максимальная скорость полицейского в 2 раза больше максимальной скорости гангстера. Полицейский сможет увидеть гангстера, если он окажется от него на расстоянии, не большем r. Доказать, что полицейский всегда может поймать гангстера, если:   а)  r > l/3;   б)   r > l/4;   в)   r > l/5;   г)   r > l/7.

ВверхВниз   Решение


Квадрат ABCD и окружность пересекаются в восьми точках так, что образуются четыре криволинейных треугольника:  AEF, BGH, CIJ, DKL  (EF, GH, IJ, KL – дуги окружности). Докажите, что
  а) сумма длин дуг EF и IJ равна сумме длин дуг GH и KL;
  б) сумма периметров криволинейных треугольников AEF и CIJ равна сумме периметров криволинейных треугольников BGH и DKL.

ВверхВниз   Решение


На гипотенузе AB прямоугольного треугольника ABC во внешнюю сторону построен квадрат ABDE. Известно, что  AC = 1,   BC = 3.
В каком отношении делит сторону DE биссектриса угла C?

ВверхВниз   Решение


Отрезок AB пересекает две равные окружности и параллелен их линии центров, причём все точки пересечения прямой AB с окружностями лежат между A и B. Через точку A проводятся касательные к окружности, ближайшей к A, через точку B – касательные к окружности, ближайшей к B. Оказалось, что эти четыре касательные образуют четырёхугольник, содержащий внутри себя обе окружности. Докажите, что в этот четырёхугольник можно вписать окружность.

ВверхВниз   Решение


Внутри квадрата ABCD выбрана такая точка M, что  ∠MAC = ∠MCD = α.  Найдите величину угла ABM.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 97981  (#1)

Темы:   [ Подсчет двумя способами ]
[ Четность и нечетность ]
[ Куб ]
[ Инварианты ]
Сложность: 3
Классы: 7,8,9,10

В каждой вершине куба стоит число +1 или –1. В центре каждой грани куба поставлено число, равное произведению чисел в вершинах этой грани.
Может ли сумма получившихся 14 чисел оказаться равной 0?

Прислать комментарий     Решение

Задача 108031  (#2)

Темы:   [ Вспомогательная окружность ]
[ Вписанный угол равен половине центрального ]
[ Угол между касательной и хордой ]
Сложность: 3+
Классы: 8,9

Внутри квадрата ABCD выбрана такая точка M, что  ∠MAC = ∠MCD = α.  Найдите величину угла ABM.

Прислать комментарий     Решение

Задача 97983  (#3)

Темы:   [ Разложение в произведение транспозиций и циклов ]
[ Полуинварианты ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 4
Классы: 9,10,11

Автор: Фольклор

Числа  1, 2, 3, ..., n  записываются в некотором порядке:  a1, a2, a3, ..., an.  Берётся сумма  S = a1/1 + a2/2 + ... + an/n.  Найдите такое n, чтобы среди таких сумм (при всевозможных перестановках  a1, a2, a3, ..., an)  встретились все целые числа от n до  n + 100.

 
Прислать комментарий     Решение

Задача 97984  (#4)

Темы:   [ Принцип Дирихле (прочее) ]
[ Арифметика остатков (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10

Автор: Фольклор

а) Даны две одинаковые шестерёнки с 14 зубьями каждая. Их наложили друг на друга так, что зубья совпали (так что проекция на плоскость выглядит как одна шестерёнка). После этого четыре пары совпадающих зубьев выпилили. Всегда ли можно повернуть эти шестерёнки друг относительно друга так, чтобы проекция на плоскость выглядела как одна целая шестерёнка? (Шестерёнки можно поворачивать, но нельзя переворачивать.)

б) Тот же вопрос про две шестерёнки с 13 зубьями, из которых выпилили по 4 зуба.

Прислать комментарий     Решение

Задача 97985  (#5)

Темы:   [ Перестройки ]
[ Выпуклые многоугольники ]
[ Разные задачи на разрезания ]
Сложность: 4-
Классы: 8,9,10

Выпуклый n-угольник разрезан непересекающимися диагоналями на треугольники. Разрешается проделывать следующее преобразование (перестройку): взяв пару треугольников ABD и BCD с общей стороной, заменить их на треугольники ABC и ACD. Пусть P(n) – наименьшее число перестроек, за которое можно перевести каждое разбиение в любое. Докажите, что
  а)  P(n) ≥ n – 3;
  б)  P(n) ≤ 2n – 7;
  в)  P(n) ≤ 2n – 10  при  n ≥ 13.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .