ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Этапы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Верёвочку сложили пополам, потом ещё раз пополам, потом снова пополам, а затем все слои верёвочки разрезали в одном месте. Фиксированы две окружности w1 и w2, одна их внешняя касательная l и одна их внутренняя касательная m. На прямой m выбирается точка X, а на прямой L строятся точки Y и Z так, что XY и XZ касаются w1 и w2 соответственно, а треугольник XYZ содержит окружности w1 и w2. Докажите, что центры окружностей, вписанных в треугольники XYZ, лежат на одной прямой. В треугольнике АВС проведена биссектриса BD. Докажите, что АВ > AD.
Сфера проходит через точки A , B , C , D и пересекает отрезки
SA , SB , SC , SD в точках A1 , B1 , C1 , D1
соответственно. Известно, что SD1 = Для некоторых чисел а, b, c и d, отличных от нуля, выполняется равенство: а) Все вершины пирамиды лежат на гранях куба, но не на его ребрах, причем на каждой грани лежит хотя бы одна вершина. Какое наибольшее количество вершин может иметь пирамида? б) Все вершины пирамиды лежат в плоскостях граней куба, но не на прямых, содержащих его ребра, причем в плоскости каждой грани лежит хотя бы одна вершина. Какое наибольшее количество вершин может иметь пирамида? Существует ли такое вещественное α, что число cos α иррационально, а все числа cos 2α, cos 3α, cos 4α, cos 5α рациональны? Фокусник с завязанными глазами выдаёт зрителю пять карточек с номерами от 1 до 5. Зритель прячет две карточки, а три отдаёт ассистенту фокусника. Ассистент указывает зрителю на две из них, и зритель называет номера этих карточек фокуснику (в том порядке, в каком захочет). После этого фокусник угадывает номера карточек, спрятанных у зрителя. Как фокуснику и ассистенту договориться, чтобы фокус всегда удавался? Найдите все такие простые числа p, q, r и s, что их сумма – простое число. а числа p² + qs и p² + qr – квадраты натуральных чисел. (Числа p, q, r и s предполагаются различными.) Каждую сторону выпуклого четырёхугольника продолжили в обе стороны и на всех восьми продолжениях отложили равные между собой отрезки. Оказалось, что получившиеся восемь точек – внешние концы построенных отрезков – различны и лежат на одной окружности. Докажите, что исходный четырёхугольник – квадрат. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 56]
Каждую сторону выпуклого четырёхугольника продолжили в обе стороны и на всех восьми продолжениях отложили равные между собой отрезки. Оказалось, что получившиеся восемь точек – внешние концы построенных отрезков – различны и лежат на одной окружности. Докажите, что исходный четырёхугольник – квадрат.
По шоссе мимо наблюдателя проехали "Москвич", "Запорожец" и двигавшаяся им навстречу "Нива". Известно, что когда с наблюдателем поравнялся "Москвич", то он был равноудалён от "Запорожца" и "Нивы", а когда с наблюдателем поравнялась "Нива", то она была равноудалена от "Москвича" и "Запорожца". Докажите, что "Запорожец" в момент проезда мимо наблюдателя был равноудалён от "Нивы" и "Москвича". (Скорости автомашин считаем постоянными. В рассматриваемые моменты равноудалённые машины находились по разные стороны от наблюдателя.)
Среди 18 деталей, выставленных в ряд, какие-то три подряд стоящие весят по 99 г, а все остальные – по 100 г. Двумя взвешиваниями на весах со стрелкой определите все 99-граммовые детали.
Клетки квадрата 9×9 окрашены в красный и белый цвета. Докажите, что найдётся или клетка, у которой ровно два красных соседа по углу, или клетка, у которой ровно два белых соседа по углу (или и то, и другое).
Приведённый квадратный трёхчлен с целыми коэффициентами в трёх последовательных
целых точках принимает простые значения.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 56]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке