ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Найдите все натуральные числа, имеющие ровно шесть делителей, сумма которых равна 3500. Последовательность (an) задана условиями a1= 1000000 , an+1=n[ Дан выпуклый четырёхугольник ABCD . Пусть P и Q – точки пересечения лучей BA и CD , BC и AD соответственно, а H – проекция D на PQ . Докажите, что четырёхугольник ABCD является описанным тогда и только тогда, когда вписанные окружности треугольников ADP и CDQ видны из точки H под равными углами. Докажите, что если a, b, c – положительные числа и ab + bc + ca > a + b + c, то a + b + c > 3. Дан угол с вершиной B. Возьмём произвольную равнобедренную трапецию, боковые стороны которой лежат на сторонах данного угла. Через две противоположные её вершины проведём касательные к описанной около неё окружности. Через M обозначим точку пересечения этих касательных. Какую фигуру образуют все такие точки M? Верно ли, что из произвольного треугольника можно вырезать три равные фигуры, площадь каждой из которых больше четверти площади треугольника? Существует ли такая бесконечная периодическая последовательность, состоящая из букв a и b, что при одновременной замене всех букв a на aba и букв b на bba она переходит в себя (возможно, со сдвигом)? В выпуклом пятиугольнике ABCDE сторона AB перпендикулярна стороне CD, а сторона BC – стороне DE. Внутри выпуклого пятиугольника выбраны две точки. Докажите, что можно выбрать четырёхугольник с вершинами в вершинах пятиугольника так, что внутрь него попадут обе выбранные точки. Биссектрисы BB1 и CC1 треугольника ABC пересекаются в точке I. Прямая B1C1 пересекает описанную окружность треугольника ABC в точках M и N. Внутри параллелограмма ABCD выбрана точка M, а внутри треугольника AMD точка N, причём ∠MNA + ∠ MCB = ∠MND + ∠MBC = 180°. Пусть AD – биссектриса треугольника ABC и прямая l касается окружностей, описанных около треугольников ADB и ADC , в точках M и N соответственно. Докажите, что окружность, проходящая через середины отрезков BD , DC и MN касается прямой l . |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]
Приведённый квадратный трёхчлен f(x) имеет два различных корня. Может ли так оказаться, что уравнение f(f(x)) = 0 имеет три различных корня, а уравнение f(f(f(x))) = 0 – семь различных корней?
Пусть AD – биссектриса треугольника ABC и прямая l касается окружностей, описанных около треугольников ADB и ADC , в точках M и N соответственно. Докажите, что окружность, проходящая через середины отрезков BD , DC и MN касается прямой l .
Проведено три семейства параллельных прямых, по 10 прямых в каждом. Какое наибольшее число треугольников они могут вырезать из плоскости?
Дана последовательность {xk} такая, что x1=1 , xn+1=n sin xn+1 . Докажите, что последовательность непериодична.
Докажите, что если у тетраэдра два отрезка, идущие из концов некоторого ребра в центры вписанных окружностей противолежащих граней, пересекаются, то отрезки, выпущенные из концов скрещивающегося с ним ребра в центры вписанных окружностей двух других граней, также пересекаются.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке