Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Автор: Храмцов Д.

Пусть I – точка пересечения биссектрис треугольника ABC . Обозначим через A' , B' , C' точки, симметричные точке I относительно сторон треугольника ABC . Докажите, что если окружность, описанная около треугольника A'B'C' , проходит через вершину B , то ABC = 60o .

Вниз   Решение


На доске написано n выражений вида  *x² + *x + * = 0  (n – нечетное число). Двое играют в такую игру. Ходят по очереди. За ход разрешается заменить одну из звёздочек числом, не равным нулю. Через 3n ходов получится n квадратных уравнений. Первый игрок стремится к тому, чтобы как можно большее число этих уравнений не имело корней, а второй хочет ему помешать. Какое наибольшее число уравнений, не имеющих корней, может получить первый игрок независимо от игры второго?

ВверхВниз   Решение


Найдите все простые p, для каждого из которых существуют такие натуральные x и y, что  px = y³ + 1.

ВверхВниз   Решение


Отрезки AB и CD длины 1 пересекаются в точке O , причем AOC=60o . Докажите, что AC+BD1 .

ВверхВниз   Решение


Автор: Перлин А.

Решите в положительных числах систему уравнений

   

ВверхВниз   Решение


Натуральное число n таково, что числа  2n + 1  и  3n + 1  являются квадратами. Может ли при этом число  5n + 3  быть простым?

ВверхВниз   Решение


В первые 1999 ячеек компьютера в указанном порядке записаны числа: 1, 2, 4, 21998 . Два программиста по очереди уменьшают за один ход на единицу числа в пяти различных ячейках. Если в одной из ячеек появляется отрицательное число, то компьютер ломается, и сломавший его оплачивает ремонт. Кто из программистов может уберечь себя от финансовых потерь независимо от ходов партнера, и как он должен для этого действовать?

ВверхВниз   Решение


Автор: Перлин А.

У каждого из жителей города N знакомые составляют не менее 30 населения города. Житель идет на выборы, если баллотируется хотя бы один из его знакомых. Докажите, что можно так провести выборы мэра города N из двух кандидатов, что в них примет участие не менее половины жителей.

ВверхВниз   Решение


На диагонали AC выпуклого четырёхугольника ABCD выбрана точка K, для которой  KD = DC, ∠BAC = ½ KDC,  ∠DAC = ½ ∠KBC.
Докажите, что  ∠KDA = ∠BCA  или  ∠KDA = ∠KBA.

ВверхВниз   Решение


Автор: Перлин А.

Квадратный трёхчлен  f(x) разрешается заменить на один из трёхчленов      или     Можно ли с помощью таких операций из квадратного трёхчлена  x² + 4x + 3  получить трёхчлен  x² + 10x + 9?

ВверхВниз   Решение


Два игрока по очереди выписывают на доске в ряд слева направо произвольные цифры. Проигрывает игрок, после хода которого одна или несколько цифр, записанных подряд, образуют число, кратное 11. Кто из игроков победит при правильной игре?

ВверхВниз   Решение


Автор: Сонкин М.

Дан треугольник ABC. Точка B1 делит пополам длину ломаной ABC (составленной из отрезков AB и BC), точка C1 делит пополам длину ломаной ACB, точка A1 делит пополам длину ломаной CAB. Через точки A1, B1 и C1 проводятся прямые lA, lB и lC, параллельные биссектрисам углов BAC, ABC и ACB соответственно. Докажите, что прямые lA, lB и lC пересекаются в одной точке.

ВверхВниз   Решение


Автор: Сонкин М.

На сторонах BC и CD параллелограмма ABCD взяты точки M и N соответственно. Диагональ BD пересекает стороны AM и AN треугольника AMN соответственно в точках E и F , разбивая его на две части. Докажите, что эти две части имеют одинаковые площади тогда и только тогда, когда точка K , определяемая условиями EK || AD , FK || AB , лежит на отрезке MN .

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]      



Задача 109538  (#93.4.10.3)

Тема:   [ Системы алгебраических нелинейных уравнений ]
Сложность: 4-
Классы: 8,9,10

Автор: Перлин А.

Решите в положительных числах систему уравнений

   

Прислать комментарий     Решение

Задача 109539  (#93.4.10.4)

Темы:   [ Объединение, пересечение и разность множеств ]
[ Разбиения на пары и группы; биекции ]
[ Подсчет двумя способами ]
[ Необычные конструкции ]
Сложность: 5
Классы: 9,10,11

Автор: Перлин А.

У каждого из жителей города N знакомые составляют не менее 30 населения города. Житель идет на выборы, если баллотируется хотя бы один из его знакомых. Докажите, что можно так провести выборы мэра города N из двух кандидатов, что в них примет участие не менее половины жителей.
Прислать комментарий     Решение


Задача 109547  (#93.4.10.5)

Темы:   [ Уравнения в целых числах ]
[ Деление с остатком ]
[ Арифметика остатков (прочее) ]
[ Тождественные преобразования ]
Сложность: 4-
Классы: 8,9,10

Автор: Калинин А.

Докажите, что уравнение  x³ + y³ = 4(x²y + xy² + 1)  не имеет решений в целых числах.

Прислать комментарий     Решение

Задача 109540  (#93.4.10.6)

Темы:   [ Иррациональные неравенства ]
[ Индукция (прочее) ]
[ Классические неравенства (прочее) ]
Сложность: 4
Классы: 8,9,10

Докажите, что  

Прислать комментарий     Решение

Задача 108232  (#93.4.10.7)

Темы:   [ Перегруппировка площадей ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Признаки и свойства параллелограмма ]
[ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4
Классы: 8,9

Автор: Сонкин М.

На сторонах BC и CD параллелограмма ABCD взяты точки M и N соответственно. Диагональ BD пересекает стороны AM и AN треугольника AMN соответственно в точках E и F , разбивая его на две части. Докажите, что эти две части имеют одинаковые площади тогда и только тогда, когда точка K , определяемая условиями EK || AD , FK || AB , лежит на отрезке MN .
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .