ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что для любых действительных чисел a и b справедливо неравенство  a² + ab + b² ≥ 3(a + b – 1).

   Решение

Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



Задача 109543  (#93.4.9.1)

Темы:   [ Квадратичные неравенства (несколько переменных) ]
[ Исследование квадратного трехчлена ]
[ Выделение полного квадрата. Суммы квадратов ]
[ Тождественные преобразования ]
Сложность: 3+
Классы: 8,9,10

Докажите, что для любых действительных чисел a и b справедливо неравенство  a² + ab + b² ≥ 3(a + b – 1).

Прислать комментарий     Решение

Задача 109544  (#93.4.9.2)

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 11 ]
[ Метод спуска ]
Сложность: 3+
Классы: 7,8,9

Найдите наибольшее натуральное число, из которого вычеркиванием цифр нельзя получить число, кратное 11.

Прислать комментарий     Решение

Задача 108229  (#93.4.9.3)

Темы:   [ Симметрия помогает решить задачу ]
[ Доказательство от противного ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 8,9

На сторонах AB и BC треугольника ABC выбраны точки M и N соответственно. Отрезки AN и CM пересекаются в точке O, причём  AO = CO.  Обязательно ли треугольник ABC равнобедренный, если   а)  AM = CN;   б)  BM = BN?

Прислать комментарий     Решение

Задача 109546  (#93.4.9.4)

Темы:   [ Процессы и операции ]
[ Разбиения на пары и группы; биекции ]
Сложность: 5-
Классы: 8,9,10

В колоде n карт. Часть из них лежит рубашками вверх, остальные – рубашками вниз. За один ход разрешается взять несколько карт сверху, перевернуть полученную стопку и снова положить ее сверху колоды. За какое наименьшее число ходов при любом начальном расположении карт можно добиться того, чтобы все карты лежали рубашками вниз?
Прислать комментарий     Решение


Задача 109547  (#93.4.9.5)

Темы:   [ Уравнения в целых числах ]
[ Деление с остатком ]
[ Арифметика остатков (прочее) ]
[ Тождественные преобразования ]
Сложность: 4-
Классы: 8,9,10

Автор: Калинин А.

Докажите, что уравнение  x³ + y³ = 4(x²y + xy² + 1)  не имеет решений в целых числах.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .