ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В городе несколько площадей. Некоторые пары площадей соединены улицами с односторонним движением так, что с каждой площади можно выехать ровно по двум улицам. Докажите, что город можно разделить на 1014 районов так, чтобы улицами соединялись только площади из разных районов, и для каждых двух районов все соединяющие их улицы были направлены одинаково (либо все из первого района во второй, либо наоборот). |
Страница: << 1 2 3 4 5 >> [Всего задач: 24]
На плоскости взято конечное число красных и синих прямых, среди которых нет параллельных, так, что через каждую точку пересечения одноцветных прямых проходит прямая другого цвета. Докажите, что все прямые проходят через одну точку.
Многочлены P, Q и R с действительными коэффициентами, среди которых есть многочлен второй степени и многочлен третьей степени, удовлетворяют равенству P² + Q² = R². Докажите, что все корни одного из многочленов третьей степени – действительные.
На плоскости отмечено несколько точек. Для любых трех из них существует декартова система координат (т.е. перпендикулярные оси и общий масштаб), в которой эти точки имеют целые координаты. Докажите, что существует декартова система координат, в которой все отмеченные точки имеют целые координаты.
Докажите, что для всех x
В городе несколько площадей. Некоторые пары площадей соединены улицами с односторонним движением так, что с каждой площади можно выехать ровно по двум улицам. Докажите, что город можно разделить на 1014 районов так, чтобы улицами соединялись только площади из разных районов, и для каждых двух районов все соединяющие их улицы были направлены одинаково (либо все из первого района во второй, либо наоборот).
Страница: << 1 2 3 4 5 >> [Всего задач: 24]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке