ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Hа плоскости проведены шесть прямых. Известно, что для любых трёх из них найдется такая четвёртая из этого же набора прямых, что все четыре будут касаться некоторой окружности. Oбязательно ли все шесть прямых касаются одной и той же окружности?

Вниз   Решение



Кузнечик вначале сидит в точке M плоскости Oxy вне квадрата  0 ≤ x ≤ 1,  0 ≤ y ≤ 1  (координаты M – нецелые, расстояние от M до центра квадрата равно d). Кузнечик прыгает в точку, симметричную M относительно самой правой (с точки зрения кузнечика) вершины квадрата. Докажите, что за несколько таких прыжков кузнечик не сможет удалиться от центра квадрата более чем на 10d.

ВверхВниз   Решение


На оборотных сторонах 2005 карточек написаны различные числа (на каждой по одному). За один вопрос разрешается указать на любые три карточки и узнать множество чисел, написанных на них. За какое наименьшее число вопросов можно узнать, какие числа записаны на каждой карточке?

ВверхВниз   Решение


Докажите, что при  n > 0  многочлен  x2n+1 – (2n + 1)xn+1 + (2n + 1)xn – 1  делится на  (x – 1)³.

ВверхВниз   Решение


Пусть a, b, c – положительные числа, сумма которых равна 1. Докажите неравенство:  

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 55]      



Задача 109790  (#03.5.9.4)

Темы:   [ Периодические и непериодические дроби ]
[ Периодичность и непериодичность ]
[ Простые числа и их свойства ]
[ Делимость чисел. Общие свойства ]
Сложность: 5-
Классы: 9,10,11

Последовательность {an} строится следующим образом:  a1 = p  – простое число, имеющее ровно 300 ненулевых цифр, an+1 – период десятичной дроби 1/an, умноженный на 2. Найдите число a2003.

Прислать комментарий     Решение

Задача 109791  (#03.5.9.5)

Темы:   [ Обход графов ]
[ Раскраски ]
[ Индукция (прочее) ]
Сложность: 4+
Классы: 8,9,10

В стране n городов. Между каждыми двумя из них проложена либо автомобильная, либо железная дорога. Турист хочет объехать страну, побывав в каждом городе ровно один раз, и вернуться в город, с которого он начинал путешествие. Докажите, что турист может выбрать город, с которого он начнет путешествие, и маршрут так, что ему придётся поменять вид транспорта не более одного раза.

Прислать комментарий     Решение

Задача 109792  (#03.5.9.6)

Темы:   [ Алгебраические неравенства (прочее) ]
[ Классические неравенства (прочее) ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Неравенства. Метод интервалов ]
Сложность: 4
Классы: 8,9,10

Пусть a, b, c – положительные числа, сумма которых равна 1. Докажите неравенство:  

Прислать комментарий     Решение

Задача 109793  (#03.5.9.7)

Темы:   [ Геометрия на клетчатой бумаге ]
[ Делимость чисел. Общие свойства ]
[ Разбиения на пары и группы; биекции ]
[ Подсчет двумя способами ]
[ Доказательство от противного ]
Сложность: 5-
Классы: 7,8,9

Можно ли в клетках бесконечного клетчатого листа расставить натуральные числа таким образом, чтобы при любых натуральных  m, n > 100  сумма чисел в любом прямоугольнике m×n клеток делилась на  m + n?

Прислать комментарий     Решение

Задача 109794  (#03.5.9.8)

Темы:   [ Ортоцентр и ортотреугольник ]
[ Радикальная ось ]
[ Вспомогательные подобные треугольники ]
[ Четыре точки, лежащие на одной окружности ]
[ Вспомогательная окружность ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Три точки, лежащие на одной прямой ]
Сложность: 4
Классы: 9,10,11

На сторонах AP и PD остроугольного треугольника APD выбраны соответственно точки B и C. Диагонали четырёхугольника ABCD пересекаются в точке Q. Точки H1 и H2 являются ортоцентрами треугольников APD и BPC соответственно. Докажите, что если прямая H1H2 проходит через точку X пересечения описанных окружностей треугольников ABQ и CDQ, то она проходит и через точку Y пересечения описанных окружностей треугольников BQC и AQD.
(X ≠ Q,  Y ≠ Q.)

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 55]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .