ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
Длина наибольшей стороны треугольника равна 1. Докажите, что три круга
радиуса Даны многочлены P(x), Q(x). Известно, что
для некоторого многочлена R(x, y) выполняется равенство
P(x) – P(y) = R(x, y)(Q(x) – Q(y)). Найдите все такие пары квадратных трёхчленов x² + ax + b, x² + cx + d, что a и b – корни второго трёхчлена, c и d – корни первого. Проведено три семейства параллельных прямых, по 10 прямых в каждом. Какое наибольшее число треугольников они могут вырезать из плоскости? Имеется 8 монет, 7 из которых – настоящие, которые весят одинаково, и одна фальшивая, отличающаяся по весу от остальных. Чашечные весы без гирь таковы, что если положить на их чашки равные грузы, то любая из чашек может перевесить, если же грузы различны по массе, то обязательно перетягивает чашка с более тяжелым грузом. Как за четыре взвешивания наверняка определить фальшивую монету и установить, легче она или тяжелее остальных? Дан треугольник A0B0C0 . На отрезке A0B0 отмечены точки A1 , A2, ,An , а на отрезке B0C0 – точки C1 , C2, , Cn , причём все отрезки AiCi+1 ( i=0,1, n-1 ), параллельны между собой и все отрезки CiAi+1 ( i=0,1, n-1 ) – тоже. Отрезки C0A1 , A1C2 , A2C1 и C1A0 ограничивают некоторый параллелограмм, отрезки C1A2 , A2C3 , A3C2 и C2A1 – тоже и т.д. Докажите, что сумма площадей всех n-1 получившихся параллелограммов меньше половины площади треугольника A0B0C0 .
Каждую вершину выпуклого четырехугольника площади S отразили симметрично относительно диагонали, не
содержащей эту вершину. Обозначим площадь получившегося четырехугольника через S' . Докажите, что
Двое игроков по очереди расставляют в каждой из 24 клеток поверхности куба 2×2×2 числа 1, 2, 3, 24 (каждое число можно ставить один раз). Второй игрок хочет, чтобы суммы чисел в клетках каждого кольца из 8 клеток, опоясывающего куб, были одинаковыми. Сможет ли первый игрок ему помешать?
Докажите, что для всех x
Докажите, что sin |
Страница: << 1 2 3 4 5 >> [Всего задач: 22]
Докажите, что sin
Сумма и произведение двух чисто периодических десятичных дробей –
чисто периодические дроби с периодом T.
В клетчатом прямоугольнике 49×69 отмечены все 50· 70 вершин клеток. Двое играют в следующую игру: каждым своим ходом каждый игрок соединяет две точки отрезком, при этом одна точка не может являться концом двух проведенных отрезков. Отрезки могут содержать общие точки. Отрезки проводятся до тех пор, пока точки не кончатся. Если после этого первый может выбрать на всех проведенных отрезках направления так, что сумма всех полученных векторов равна нулевому вектору, то он выигрывает, иначе выигрывает второй. Кто выигрывает при правильной игре?
Биссектрисы BB1 и CC1 треугольника ABC пересекаются в точке I. Прямая B1C1 пересекает описанную окружность треугольника ABC в точках M и N.
Последовательности положительных чисел (xn) и (yn) удовлетворяют условиям
Страница: << 1 2 3 4 5 >> [Всего задач: 22]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке