Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

В тетраэдре ABCD из вершины A опустили перпендикуляры AB' , AC' , AD' на плоскости, делящие двугранные углы при ребрах CD , BD , BC пополам. Докажите, что плоскость (B'C'D') параллельна плоскости (BCD) .

Вниз   Решение


Косинусы углов одного треугольника соответственно равны синусам углов другого треугольника.
Найдите наибольший из шести углов этих треугольников.

ВверхВниз   Решение


Назовём раскраску доски 8×8 в три цвета хорошей, если в любом уголке из пяти клеток присутствуют клетки всех трёх цветов. (Уголок из пяти клеток – это фигура, получающаяся из квадрата 3×3 вырезанием квадрата 2×2.)  Докажите, что количество хороших раскрасок не меньше чем 68.

ВверхВниз   Решение


Дан треугольник ABC . На прямой AC отмечена точка B1 так, что AB=AB1 , при этом B1 и C находятся по одну сторону от A . Через точки C , B1 и основание биссектрисы угла A треугольника ABC проводится окружность , вторично пересекающая окружность, описанную около треугольника ABC , в точке Q . Докажите, что касательная, проведённая к в точке Q , параллельна AC .

ВверхВниз   Решение


Автор: Гарбер А.

Известно, что многочлен  (x + 1)n – 1  делится на некоторый многочлен  P(x) = xk + ck–1xk–1 + ck–2xk–2 + ... + c1x + c0  чётной степени k, у которого все коэффициенты – целые нечётные числа. Докажите, что n делится на  k + 1.

ВверхВниз   Решение


Автор: Гулько С.

В один из дней года оказалось, что каждый житель города сделал не более одного звонка по телефону. Докажите, что население города можно разбить не более чем на три группы так, чтобы жители, входящие в одну группу, не разговаривали в этот день между собой по телефону.

ВверхВниз   Решение


AA1 и BB1 – высоты остроугольного неравнобедренного треугольника ABC. Известно, что отрезок A1B1 пересекает среднюю линию, параллельную AB, в точке C'. Докажите, что отрезок CC' перпендикулярен прямой, проходящей через точку пересечения высот и центр описанной окружности треугольника ABC.

ВверхВниз   Решение


Биссектрисы углов A и C треугольника ABC пересекают описанную окружность этого треугольника в точках A0 и C0 соответственно. Прямая, проходящая через центр вписанной окружности треугольника ABC параллельно стороне AC , пересекается с прямой A0C0 в точке P . Докажите, что прямая PB касается описанной окружности треугольника ABC .

ВверхВниз   Решение


Автор: Лифшиц Ю.

Мишень представляет собой треугольник, разбитый тремя семействами параллельных прямых на 100 равных правильных треугольничков с единичными сторонами. Снайпер стреляет по мишени. Он целится в треугольничек и попадает либо в него, либо в один из соседних с ним по стороне. Он видит результаты своей стрельбы и может выбирать, когда стрельбу заканчивать. Какое наибольшее число треугольничков он может с гарантией поразить ровно пять раз?

ВверхВниз   Решение


Автор: Садыков Р.

В ячейки куба 11×11×11 поставлены по одному числа 1, 2, ..., 1331. Из одного углового кубика в противоположный угловой отправляются два червяка. Каждый из них может проползать в соседний по грани кубик, при этом первый может проползать, если число в соседнем кубике отличается на 8, второй – если отличается на 9. Существует ли такая расстановка чисел, что оба червяка смогут добраться до противоположного углового кубика?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]      



Задача 110168  (#04.4.9.3)

Темы:   [ Числовые таблицы и их свойства ]
[ Куб ]
[ Шахматная раскраска ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 8,9,10

Автор: Садыков Р.

В ячейки куба 11×11×11 поставлены по одному числа 1, 2, ..., 1331. Из одного углового кубика в противоположный угловой отправляются два червяка. Каждый из них может проползать в соседний по грани кубик, при этом первый может проползать, если число в соседнем кубике отличается на 8, второй – если отличается на 9. Существует ли такая расстановка чисел, что оба червяка смогут добраться до противоположного углового кубика?

Прислать комментарий     Решение

Задача 110160  (#04.4.9.4)

Темы:   [ НОД и НОК. Взаимная простота ]
[ Делимость чисел. Общие свойства ]
Сложность: 4
Классы: 8,9,10

Три натуральных числа таковы, что произведение каждых двух из них делится на сумму этих двух чисел.
Докажите, что эти три числа имеют общий делитель, больший единицы.

Прислать комментарий     Решение

Задача 110161  (#04.4.9.5)

Темы:   [ Числовые таблицы и их свойства ]
[ Признаки делимости на 11 ]
[ Шахматная раскраска ]
Сложность: 3+
Классы: 9,10,11

В клетки таблицы 100×100 записаны ненулевые цифры. Оказалось, что все 100 стозначных чисел, записанных по горизонтали, делятся на 11. Могло ли так оказаться, что ровно 99 стозначных чисел, записанных по вертикали, также делятся на 11?

Прислать комментарий     Решение

Задача 110162  (#04.4.9.6)

Темы:   [ Выделение полного квадрата. Суммы квадратов ]
[ Неравенства с модулями ]
[ Иррациональные неравенства ]
Сложность: 4-
Классы: 9,10,11

Положительные числа x, y, z таковы, что модуль разности любых двух из них меньше 2.
Докажите, что   + + > x + y + z.

Прислать комментарий     Решение

Задача 108211  (#04.4.9.7)

Темы:   [ Вспомогательная окружность ]
[ Три точки, лежащие на одной прямой ]
[ Вписанные четырехугольники (прочее) ]
[ Признаки и свойства параллелограмма ]
Сложность: 4-
Классы: 9,10,11

Внутри параллелограмма ABCD выбрана точка M, а внутри треугольника AMD точка N, причём  ∠MNA + ∠ MCB = ∠MND + ∠MBC = 180°.
Докажите, что прямые MN и AB параллельны.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .