Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Целые числа x, y и z таковы, что  (x – y)(y – z)(z – x) = x + y + z.  Докажите, что число  x + y + z  делится на 27.

Вниз   Решение


Окружности S1 и S2 пересекаются в точках M и N. Докажите, что если вершины A и C некоторого прямоугольника ABCD лежат на окружности S1, а вершины B и D – на окружности S2, то точка пересечения диагоналей прямоугольника лежит на прямой MN.

ВверхВниз   Решение


Автор: Сонкин М.

Окружность S с центром O и окружность S' пересекаются в точках A и B. На дуге окружности S, лежащей внутри S', взята точка C. Точки пересечения прямых AC и BC с S', отличные от A и B, обозначим через E и D соответственно. Докажите, что прямые DE и OC перпендикулярны.

ВверхВниз   Решение


Автор: Храмцов Д.

Докажите, что из произвольного множества трёхзначных чисел, включающего не менее четырёх чисел, взаимно простых в совокупности, можно выбрать четыре числа, также взаимно простых в совокупности.

ВверхВниз   Решение


Автор: Перлин А.

У каждого из жителей города N знакомые составляют не менее 30 населения города. Житель идет на выборы, если баллотируется хотя бы один из его знакомых. Докажите, что можно так провести выборы мэра города N из двух кандидатов, что в них примет участие не менее половины жителей.

ВверхВниз   Решение


В семейном альбоме есть десять фотографий. На каждой из них изображены три человека: в центре стоит мужчина, слева от мужчины – его сын, а справа – его брат. Какое наименьшее количество различных людей может быть изображено на этих фотографиях, если известно, что все десять мужчин, стоящих в центре, различны?

ВверхВниз   Решение


Для некоторого многочлена существует бесконечное множество его значений, каждое из которых многочлен принимает по крайней мере в двух целочисленных точках. Докажите, что существует не более одного значения, которое многочлен принимает ровно в одной целой точке.

ВверхВниз   Решение


Докажите, что из любого конечного множества точек на плоскости можно так удалить одну точку, что оставшееся множество можно разбить на две части меньшего диаметра. (Диаметр – это максимальное расстояние между точками множества.)

ВверхВниз   Решение


Имеется таблица n×n, в  n – 1  клетках которой записаны единицы, а в остальных клетках – нули. С таблицей разрешается проделывать следующую операцию: выбрать клетку, вычесть из числа, стоящего в этой клетке, единицу, а ко всем остальным числам, стоящим в одной строке или в одном столбце с выбранной клеткой, прибавить единицу. Можно ли из этой таблицы с помощью указанных операций получить таблицу, в которой все числа равны?

ВверхВниз   Решение


В стране 1993 города, и из каждого выходит не менее 93 дорог. Известно, что из каждого города можно проехать по дорогам в любой другой.
Докажите, что это можно сделать не более, чем с 62 пересадками. (Дорога соединяет между собой два города.)

ВверхВниз   Решение


На плоскости даны точки A1 , A2 , An и точки B1 , B2 , Bn . Докажите, что точки Bi можно перенумеровать так, что для всех i j угол между векторами и – острый или прямой.

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 55]      



Задача 108208  (#03.4.11.2)

Темы:   [ Вспомогательная окружность ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
[ Четырехугольники (прочее) ]
Сложность: 5-
Классы: 8,9

На диагонали AC выпуклого четырёхугольника ABCD выбрана точка K, для которой  KD = DC, ∠BAC = ½ KDC,  ∠DAC = ½ ∠KBC.
Докажите, что  ∠KDA = ∠BCA  или  ∠KDA = ∠KBA.

Прислать комментарий     Решение

Задача 110122  (#03.4.11.3)

Темы:   [ Монотонность, ограниченность ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4+
Классы: 9,10,11

Функции  f(x) – x  и  f(x²) – x6  определены при всех положительных x и возрастают.
Докажите, что функция     также возрастает при всех положительных x.

Прислать комментарий     Решение

Задача 110807  (#03.4.11.4)

Темы:   [ Принцип крайнего (прочее) ]
[ Скалярное произведение. Соотношения ]
[ Метод усреднения ]
Сложность: 5+
Классы: 9,10,11

На плоскости даны точки A1 , A2 , An и точки B1 , B2 , Bn . Докажите, что точки Bi можно перенумеровать так, что для всех i j угол между векторами и – острый или прямой.
Прислать комментарий     Решение


Задача 110123  (#03.4.11.5)

Темы:   [ Свойства коэффициентов многочлена ]
[ Многочлен нечетной степени имеет действительный корень ]
Сложность: 4-
Классы: 9,10,11

Квадратные трёхчлены  P(x) = x² + ax + b  и  Q(x) = x² + cx + d  таковы, что уравнение  P(Q(x)) = Q(P(x))  не имеет действительных корней.
Докажите, что  b ≠ d .

Прислать комментарий     Решение

Задача 110136  (#03.4.11.6)

Темы:   [ Принцип крайнего (прочее) ]
[ Степень вершины ]
Сложность: 4-
Классы: 7,8,9,10

На вечеринку пришли 100 человек. Затем те, у кого не было знакомых среди пришедших, ушли. Затем те, у кого был ровно один знакомый среди оставшихся, тоже ушли. Затем аналогично поступали те, у кого было ровно 2, 3, 4, ..., 99 знакомых среди оставшихся к моменту их ухода.
Какое наибольшее число людей могло остаться в конце?

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 55]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .