ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В треугольник ABC вписан ромб CKLN так, что точка L лежит на стороне AB, точка N – на стороне AC, точка K – на стороне BC. Пусть O1, O2 и O – центры описанных окружностей треугольников ACL, BCL и ABC соответственно. Пусть P – точка пересечения описанных окружностей треугольников ANL и BKL, отличная от L. Докажите, что точки O1, O2, O и P лежат на одной окружности.

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 115864  (#10.8)

Темы:   [ Основные свойства и определения правильных многогранников ]
[ Сферы (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Можно ли вписать октаэдр в додекаэдр так, чтобы каждая вершина октаэдра была вершиной додекаэдра?

Прислать комментарий     Решение

Задача 115863  (#10.7)

Темы:   [ Теорема косинусов ]
[ Скалярное произведение. Соотношения ]
[ Векторы (прочее) ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Разрезания на параллелограммы ]
Сложность: 4
Классы: 8,9,10,11

Дано множество точек O, A1, A2, ..., An на плоскости. Расстояние между любыми двумя из этих точек является квадратным корнем из натурального числа. Докажите, что существуют такие векторы x и y, что для любой точки Ai выполняется равенство     где k и l – некоторые целые числа.

Прислать комментарий     Решение

Задача 115862  (#10.6)

Темы:   [ Вписанные и описанные окружности ]
[ Центральное проектирование ]
[ Применение проективных преобразований прямой в задачах на доказательство ]
[ Теоремы Чевы и Менелая ]
[ Теорема Стюарта ]
Сложность: 4
Классы: 8,9,10,11

В треугольнике ABC  M – точка пересечения медиан, I – центр вписанной окружности, A1 и B1 – точки касания этой окружности со сторонами BC и AC, G – точка пересечения прямых AA1 и BB1. Докажите, что угол CGI прямой тогда и только тогда, когда   GM || AB.

Прислать комментарий     Решение

Задача 115861  (#10.5)

Темы:   [ Вписанные и описанные окружности ]
[ Четыре точки, лежащие на одной окружности ]
[ Вписанный угол равен половине центрального ]
Сложность: 3+
Классы: 8,9,10,11

В треугольник ABC вписан ромб CKLN так, что точка L лежит на стороне AB, точка N – на стороне AC, точка K – на стороне BC. Пусть O1, O2 и O – центры описанных окружностей треугольников ACL, BCL и ABC соответственно. Пусть P – точка пересечения описанных окружностей треугольников ANL и BKL, отличная от L. Докажите, что точки O1, O2, O и P лежат на одной окружности.

Прислать комментарий     Решение

Задача 115860  (#10.4)

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Вписанные и описанные окружности ]
[ Ортогональная (прямоугольная) проекция ]
[ Прямая Эйлера и окружность девяти точек ]
Сложность: 5-
Классы: 8,9,10,11

Автор: Pohoata C.

Через вершины треугольника ABC проводятся три произвольные параллельные прямые da, db, dc. Прямые, симметричные da, db, dc относительно BC, CA, AB соответственно, образуют треугольник XYZ. Найдите геометрическое место центров вписанных окружностей таких треугольников.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .