ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Набор из 2003 положительных чисел таков, что для любых двух входящих в него чисел a и b ( a>b ) хотя бы одно из чисел a+b или a-b тоже входит в набор. Докажите, что если данные числа упорядочить по возрастанию, то разности между соседними числами окажутся одинаковыми. Пусть K, L, M, N – середины сторон AB, BC, CD, AD выпуклого четырёхугольника ABCD; отрезки KM и LN пересекаются в точке O. В выпуклом четырёхугольнике ABCD: ∠ВАС = 20°, ∠ВСА = 35°, ∠ВDС = 40°, ∠ВDА = 70°. На некоторых клетках шахматной доски лежит по конфете. Известно, что в каждой строке, в каждом столбце и в каждой диагонали (любой длины, даже состоящей из одной клетки) лежит чётное количество конфет (возможно, ни одной). Какое максимальное количество конфет может лежать на доске? Числа от 1 до 37 записали в строку так, что сумма любых первых нескольких чисел делится на следующее за ними число. Найдите все простые числа p, q и r, для которых выполняется равенство: p + q = (p – q)r. Две окружности пересекаются в точках P и Q. Прямая пересекает эти окружности последовательно в точках A, B, C и D, как показано на рисунке. Как расположить в пространстве спичечный коробок, чтобы его проекция на плоскость имела наибольшую площадь? Для некоторых натуральных чисел a, b, c и d выполняются равенства a/c = b/d = ab+1/cd+1. Докажите, что a = c и b = d. Докажите, что остроугольный треугольник полностью покрывается тремя квадратами, построенными на его сторонах как на диагоналях. На сторонах AB и BC треугольника ABC выбраны точки M и N соответственно. Отрезки AN и CM пересекаются в точке O, причём AO = CO. Обязательно ли треугольник ABC равнобедренный, если а) AM = CN; б) BM = BN?
Диагонали прямоугольного параллелепипеда ABCDA1B1C1D1 ,
вписанного в сферу радиуса R , наклонены к плоскости основания
под углом 45o . Найдите площадь сечения этого параллелепипеда
плоскостью, которая проходит через диагональ AC1 , параллельна
диагонали основания BD и образует с диагональю BD1 угол, равный
arcsin В треугольнике ABC угол C – прямой. На стороне AC
нашлась такая точка D, а на отрезке BD – такая точка K, что ∠B = ∠KAD = ∠AKD. В городе Цветочном n площадей и m улиц (m ≥ n + 1). Каждая улица соединяет две площади и не проходит через другие площади. По существующей в городе традиции улица может называться либо Синей, либо Красной. Ежегодно в городе происходит переименование: выбирается площадь и переименовываются все выходящие из неё улицы. Докажите, что можно назвать улицы так, что переименованиями нельзя добиться одинаковых названий у всех улиц города. Существуют ли такие n-значные числа M и N, что все цифры M – чётные, все цифры N – нечётные, каждая цифра от 0 до 9 встречается в десятичной записи M или N хотя бы один раз и M делится на N? Внутри круга расположены точки A1, A2, ..., An, а на его границе – точки B1, B2, ..., Bn так, что отрезки A1B1, A2B2, ..., AnBn не пересекаются. Кузнечик может перепрыгнуть из точки Ai в точку Aj, если отрезок AiAj не пересекается ни с одним из отрезков AkBk, k ≠ i, j. Делится ли число 2110 – 1 на 2200?
Диагонали прямоугольного параллелепипеда ABCDA1B1C1D1 ,
вписанного в сферу радиуса R , наклонены к плоскости основания
под углом 30o . Найдите площадь сечения этого параллелепипеда
плоскостью, которая проходит через диагональ AC1 , параллельна
диагонали основания BD и образует с диагональю BD1 угол, равный
arcsin Существует ли натуральное число, которое при делении на сумму своих цифр как в частном, так и в остатке дает число 2011? На предприятии трудятся 50000 человек. Для каждого из них сумма количества его непосредственных начальников и его непосредственных подчинённых равна 7. В понедельник каждый работник предприятия издаёт приказ и выдаёт копию этого приказа каждому своему непосредственному подчинённому (если такие есть). Далее, каждый день работник берёт все полученные им в предыдущий день приказы и либо раздаёт их копии всем своим непосредственным подчинённым, либо, если таковых у него нет, выполняет приказы сам. Оказалось, что в пятницу никакие бумаги по учреждению не передаются. Докажите, что на предприятии не менее 97 начальников, над которыми нет начальников. На боковых ребрах SA , SB и SC правильной треугольной пирамиды SABC взяты соответственно точки A1 , B1 и C1 так, что плоскости A1B1C1 и ABC параллельны. Пусть O – центр сферы, проходящей через точки S , A , B и C1 . Докажите, что прямая SO перпендикулярна плоскости A1B1C . В трапеции ABCD биссектриса тупого угла B пересекает основание AD в точке K – его середине, M – середина BC, AB = BC. |
Страница: << 1 2 3 [Всего задач: 15]
В выпуклом четырёхугольнике ABCD: ∠ВАС = 20°, ∠ВСА = 35°, ∠ВDС = 40°, ∠ВDА = 70°.
Найдите все простые числа p, q и r, для которых выполняется равенство: p + q = (p – q)r.
Найдите наибольшее натуральное n, при котором n200 < 5300.
В трапеции ABCD биссектриса тупого угла B пересекает основание AD в точке K – его середине, M – середина BC, AB = BC.
Существует ли натуральное число, которое при делении на сумму своих цифр как в частном, так и в остатке дает число 2011?
Страница: << 1 2 3 [Всего задач: 15]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке